scholarly journals Aerodynamic Characteristics of the Combustion Process of Sawdust in a Vortex Furnace with Counter-Swirling Flows

Author(s):  
Rafael Dzhyoiev ◽  
◽  
Andrei Redko ◽  
Igori Redko ◽  
Iuryi Pivnenko ◽  
...  

The aim of this work is to study the working processes of burning the low-quality fuels, namely, the saw dust in the swirling-type furnaces with an opposite twisted motion of the air. The goal was achieved using the physical and mathematical modeling of the flows interaction. The article presented the results of numerical study of aerodynamic characteristics of burning the saw dust in the swirling-type furnace with the opposite twisted air flows. For the research, the facility was used for the saw dust burning with the air supply into the lower and upper zones of burning. The most essential result of the work was modeling of the working process at the ratio of the flows of the primary air and secondary air without the fuel admixture, equal to 0.2. The tangential rate of the flow changed according to the horizontal sections from 3-5 m/s to 40-42 m/s and with respect to the furnace height from 51 m/s to 30 m/s. The average angular rate of the mixture changed relatively the furnace height in the ranges of 171-500 l/s to 100—300 l/s. The significance of the results obtained consists in determination of the possibility of increasing the efficiency of the work of the furnace facilities at the expense of the introduction of the primary and secondary air flows. In this situation, the optimal ratio of consumptions of primary and secondary air was 0.2. Thus, in this work the consumption of primary air was 1.285 kg/s, the consumption of the secondary air was 0.255 kg/s.

Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5495
Author(s):  
Karol Tucki ◽  
Olga Orynycz ◽  
Andrzej Wasiak ◽  
Antoni Świć ◽  
Leszek Mieszkalski ◽  
...  

The paper concerns the analysis of harmful emissions during the combustion process in households. The subject of the analysis is a low emission heating device with an output of 50 kW for burning biomass of forest origin (low-quality hardwoods or softwoods). The proposed boiler is automatically fed from the connected container by means of a screw conveyor. In this way, the optimum amount of fuel is supplied for maximum heat output (adjustment of the ratio of primary air to fuel). The proposed biomass heating system is equipped with a primary and secondary air supply system and exhaust gas sensors. This ensures optimal regulation of the air mixture and efficient and clean combustion. Proper control of the combustion process, control of the air supply by means of a lambda sensor and power control of the system ensure a low-emission combustion process. The system precisely adjusts to the heat demand. This results in highly efficient heating technology with low operating costs. In the presented work, the emission of exhaust gases from the proposed heating device during the combustion of woodchips and beech–oak pellets were measured. It is demonstrated that the proposed design of the boiler equipped with intelligent control significantly reduces emissions when the biomass solid fuels are used, e.g., CO emissions from beech and oak chips and pellets in the low-emission boiler—18 extract pipes shows the value <100 ppm, which is even lower than when gas is burned in the other boilers; on the other hand, the pine chips show even higher emission when burned in the low-emission burner. Consequently, the choice of biomass source and form of the fuel play some role in the emissions observed.


2012 ◽  
Vol 268-270 ◽  
pp. 898-901
Author(s):  
Shui E Yin ◽  
Jun Wu

A mathematical model was presented for the combustion of municipal solid waste in a 350t/d MSW-burning incinerator. Numerical simulations were performed to predict the temperature and the species distributions in the furnace, with practical operational conditions taken into account. When the total air supply is constant, reducing primary air and increasing secondary air properly results in the higher total temperature of the furnace and the more oxygen concentration at the furnace outlet, and thereby contributes to the complete combustion of combustibles so that an optimal combustion effect can be achieved.


2006 ◽  
Vol 10 (4) ◽  
pp. 121-130
Author(s):  
Dragoslava Stojiljkovic ◽  
Vladimir Jovanovic ◽  
Milan Radovanovic ◽  
Nebojsa Manic ◽  
Ivo Radulovic

The aim of the investigation was to make some reconstructions on the existing stove used for cooking and baking and to obtain the combined cooker-boiler which will fulfill the demands of European standard EN 12815. Implementation of modern scientific achievements in the field of combustion on stoves and furnaces fired on solid fuels was used. During the investigations four various constructions were made with different fresh air inlet and secondary air supply with the intention to obtain more complete combustion with increased efficiency and reduced CO emission. Three different fuels were used: firewood, coal, and wood briquette. A numerous parameters were measured: fuel weight changes during the combustion process, temperature of inlet and outlet water, flue gas composition (O2, CO, SO2, CO2, NOx), flue gas temperature, ash quantity etc. The result of the investigations is the stove with the efficiency of more than 75% - boiler Class 1 (according EN 12815) and CO emission of about 1% v/v. The results obtained during the measurements were used as parameters for modeling of combustion process. .


Author(s):  
Beibei Yan ◽  
Xuesong Bai ◽  
Guanyi Chen ◽  
Changye Liu

Operating parameters are considered important for the biogas combustion process and the resulted flame features. The paper investigated the influence of typical parameters through numerical simulation, which include the dimension of combustor, fuel and air mass flow, and secondary air supply. The results from the simulations show that the biogas combustion behaves, to some extent, similarly to the methane combustion, yet significant differences exist between their flames. The combustion process is fairly sensitive to the geometrical and operational parameters. Biogas flame temperature is even lower compared to the methane flame temperature because biogas contains CO2 resulting in low heating value, therefore it is not straightforward to obtain stable combustion. Preheated secondary air or reduced its mass flow may have to be used in this case.


2020 ◽  
pp. 158-158
Author(s):  
Andriy Redko ◽  
Yurii Burda ◽  
Rafael Dzhyoiev ◽  
Igor Redko ◽  
Volodymyr Norchak ◽  
...  

The paper presents the process of peat burning in a swirl furnace with countercurrent swirl flows and the results of a numerical study. The cyclone-vortex technology of solid fuel combustion allows the furnace volume of a boiler unit, its dimensions and weight to be reduced. The aim of the work is a numerical study of the combustion of pulverized peat in a cylindrical vortex furnace with countercurrent swirl flows. The results of computer simulation of the combustion of pulverized peat with a moisture content of 40%, an ash content of 6% and a higher heat of combustion Q?? = 12.3 MJ/kg are presented. The results of the influence of the design parameters of the furnace and heat load (from 100% to 15%) are given as well. When the heat load is reduced to 15%, the entrainment of unburnt particles increases. The cooled and adiabatic furnace is studied. A significant entrainment of unburned particles is observed n a cooled furnace. The fields of temperature distribution, gas velocity and particle trajectory in the volume and at the outlet of the furnace are determined. The three-dimensional temperature distribution in the furnace volume indicates the combustion of peat particles at temperatures (1300-1450?C). Values of the tangential velocity of a swirl flow near the furnace outlet reach 150 - 370 m/s, which ensures the efficiency of separation of fuel particles and a reduction in heat loss due to mechanical underburning (up to 0.06%). The results of a numerical study show that the diameter of peat particles affects the combustion process, namely coke of particles with an initial diameter from 25 microns to 250 microns burns out by 96%, and particles with a diameter of about 1000 microns are carried away from the furnace and do not burn. The furnace provides a complete combustion of dust particles of peat by 99.8% and volatiles by 100%.


2021 ◽  
pp. 1-17
Author(s):  
B. Nugroho ◽  
J. Brett ◽  
B.T. Bleckly ◽  
R.C. Chin

ABSTRACT Unmanned Combat Aerial Vehicles (UCAVs) are believed by many to be the future of aerial strike/reconnaissance capability. This belief led to the design of the UCAV 1303 by Boeing Phantom Works and the US Airforce Lab in the late 1990s. Because UCAV 1303 is expected to take on a wide range of mission roles that are risky for human pilots, it needs to be highly adaptable. Geometric morphing can provide such adaptability and allow the UCAV 1303 to optimise its physical feature mid-flight to increase the lift-to-drag ratio, manoeuvrability, cruise distance, flight control, etc. This capability is extremely beneficial since it will enable the UCAV to reconcile conflicting mission requirements (e.g. loiter and dash within the same mission). In this study, we conduct several modifications to the wing geometry of UCAV 1303 via Computational Fluid Dynamics (CFD) to analyse its aerodynamic characteristics produced by a range of different wing geometric morphs. Here we look into two specific geometric morphing wings: linear twists on one of the wings and linear twists at both wings (wash-in and washout). A baseline CFD of the UCAV 1303 without any wing morphing is validated against published wind tunnel data, before proceeding to simulate morphing wing configurations. The results show that geometric morphing wing influences the UCAV-1303 aerodynamic characteristics significantly, improving the coefficient of lift and drag, pitching moment and rolling moment.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3521 ◽  
Author(s):  
Panagiotis Stathopoulos

Conventional gas turbines are approaching their efficiency limits and performance gains are becoming increasingly difficult to achieve. Pressure Gain Combustion (PGC) has emerged as a very promising technology in this respect, due to the higher thermal efficiency of the respective ideal gas turbine thermodynamic cycles. Up to date, only very simplified models of open cycle gas turbines with pressure gain combustion have been considered. However, the integration of a fundamentally different combustion technology will be inherently connected with additional losses. Entropy generation in the combustion process, combustor inlet pressure loss (a central issue for pressure gain combustors), and the impact of PGC on the secondary air system (especially blade cooling) are all very important parameters that have been neglected. The current work uses the Humphrey cycle in an attempt to address all these issues in order to provide gas turbine component designers with benchmark efficiency values for individual components of gas turbines with PGC. The analysis concludes with some recommendations for the best strategy to integrate turbine expanders with PGC combustors. This is done from a purely thermodynamic point of view, again with the goal to deliver design benchmark values for a more realistic interpretation of the cycle.


2013 ◽  
Vol 444-445 ◽  
pp. 1574-1578 ◽  
Author(s):  
Hua Hua Xiao ◽  
Zhan Li Mao ◽  
Wei Guang An ◽  
Qing Song Wang ◽  
Jin Hua Sun

A numerical study of premixed propane/air flame propagation in a closed duct is presented. A dynamically thickened flame (TF) method is applied to model the premixed combustion. The reaction of propane in air is taken into account using a single-step global Arrhenius kinetics. It is shown that the premixed flame undergoes four stages of dynamics in the propagation. The formation of tulip flame phenomenon is observed. The pressure during the combustion process grows exponentially at the finger-shape flame stage and then slows down until the formation of tulip shape. After tulip formation the pressure increases quickly again with the increase of the flame surface area. The vortex motion behind the flame front advects the flame into tulip shape. The study indicates that the TF model is quite reliable for the investigation of premixed propane/air flame propagation.


Sign in / Sign up

Export Citation Format

Share Document