A New Carbon Black-Rubber Coupling Agent to Improve Wet Grip and Rolling Resistance of Tires

1996 ◽  
Vol 69 (2) ◽  
pp. 266-272 ◽  
Author(s):  
L. González ◽  
A. Rodríguez ◽  
J. L. de Benito ◽  
A. Marcos

Abstract The compound p-aminobenzenesulfonyl azide was developed as a new type of carbon black to rubber coupling agent. Its addition to rubber compounds increases resilience and moduli while reducing abrasion loss. The behavior of this coupling agent is confirmed by the dynamic mechanical response of the vulcanizates—the rubber Tg is shifted to higher temperatures. Rubber compositions containing this coupling agent may be used in tire treads to reduce rolling resistance and improve wet skid resistance. These attributes were estimated from dynamic property measurements.

1987 ◽  
Vol 60 (4) ◽  
pp. 606-617 ◽  
Author(s):  
Luis González Hernández ◽  
Luis M. Ibarra Rueda ◽  
Celia Chamorro Antón

Abstract The natural magnesium silicate, sepiolite (trade name Pansil), can partially substitute (up to 30%) for carbon black without important losses in physical properties and occasionally can improve them. In the NR-based compounds, as the substitution takes place, vulcanization times and Mooney viscosities decrease. Tear and abrasion resistances are lower. The same effects are observed in the SBR-based compounds, though in this case, the addition of a silane coupling agent (Silane A-189) counteracts the negative effects of the sepiolite, and the obtained values are clearly better than those with only carbon black. According to tan δ behavior in truck tire tread compounds, this filler type gives a higher wet grip resistance, but rolling resistance would be adversely affected by its use, though the presence of a silane coupling agent diminishes these effects. On the contrary, in passenger tire tread compounds, the partial substitution for carbon black seems to increase the wet resistance too, without a pronounced damage in rolling resistance. In this case, the addition of the silane coupling agent produces an increase in wet skid resistance and a decrease in rolling resistance. Based on laboratory tests, rolling resistance increases in all cases, mainly when the sepiolite was modified with silane. Wet skid resistance showed no variations. Clearly, it would be desirable to confirm our observations by an actual tire test.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
S. Sattayanurak ◽  
J. W. M. Noordermeer ◽  
K. Sahakaro ◽  
W. Kaewsakul ◽  
W. K. Dierkes ◽  
...  

Modern fuel-saving tire treads are commonly reinforced by silica due to the fact that this leads to lower rolling resistance and higher wet grip compared to carbon black-filled alternatives. The introduction of secondary fillers into the silica-reinforced tread compounds, often named hybrid fillers, may have the potential to improve tire performance further. In the present work, two secondary fillers organoclay nanofiller and N134 carbon black were added to silica-based natural rubber compounds at a proportion of silica/secondary filler of 45/10 phr. The compounds were prepared with variable mixing temperatures based on the mixing procedure commonly in use for silica-filled NR systems. The results of Mooney viscosity, Payne effect, cure behavior, and mechanical properties imply that the silica hydrophobation and coupling reaction of the silane coupling agent with silica and elastomer are significantly influenced by organoclay due to an effect of its modifier: an organic ammonium derivative. This has an effect on scorch safety and cure rate. The compounds where carbon black was added as a secondary filler do not show this behavior. They give inferior filler dispersion compared to the pure silica-filled compound, attributed to an inappropriate high mixing temperature and the high specific surface area of the carbon black used. The dynamic properties indicate that there is a potential to improve wet traction and rolling resistance of a tire tread when using organoclay as secondary filler, while the combination of carbon black in silica-filled NR does not change these properties.


2001 ◽  
Vol 74 (1) ◽  
pp. 124-137 ◽  
Author(s):  
Meng-Jiao Wang ◽  
Ping Zhang ◽  
Khaled Mahmud

Abstract The application of carbon-silica dual phase fillers (CSDPF) to natural rubber compound was investigated. It was found that these new fillers give significantly better overall performances in comparison with the conventional fillers—carbon black and silica. In a typical truck-tread compound, due to its high polymer—filler interaction and lower filler—filler interaction, the CSDPF E shows a comparable laboratory abrasion resistance and more than 40% reduction in tan δ at 70 °C, a parameter for rolling resistance, compared to compound filled with its carbon black counterpart, N1 10. These properties can, to a certain degree, be further improved by the addition of a small amount of coupling agent, bis(3-triethoxysilylpropyl)tetrasulfane (TESPT). In the case of wet skid resistance measured using the British Portable Skid Tester, the data show that CSDPF gives better performance than the conventional fillers, with and without coupling agent.


2021 ◽  
Vol 11 (21) ◽  
pp. 9834
Author(s):  
Indriasari Indriasari ◽  
Jacques Noordermeer ◽  
Wilma Dierkes

This study focuses on the use of oligomeric hydrocarbon resins in order to benefit from their effect on improving the performance of aircraft tire retreads. The aim was to enhance the tackiness for the retreading process and their final performance in terms of superior stress–strain properties and low heat generation in order to decrease treadwear; thus, increasing the tire’s service life, and in terms of traction or skid resistance to improve safety during landing of an aircraft. Two types of resins are investigated: a terpene phenol and an aromatic hydrocarbon C9 resin, added to compounds with different filler systems: Carbon Black (CB), hybrid Carbon Black/Silica (CB/SI), and pure Silica (SI). The rubber compounds and vulcanizates are compared to their controls for each filler system. The use of resins improves processing independent of the filler system, with a slight improvement of tensile strength, Modulus at 300% (M300%) and Elongation at Break (EAB). The incorporation of resins improves the tackiness for the compounds with all filler systems, which is beneficial for the retreading process. A significant improvement in Ice Traction (ICT) and Wet Skid Resistance (WSR) with a trade-off in Heat Build-Up (HBU) is observed in CB- and CB/SI-reinforced compounds when resins are added. Terpene phenol and aromatic hydrocarbon C9 resin show comparable ICT, while the aromatic hydrocarbon C9 resin gives a better WSR performance than the terpene phenol in all compounds. However, a slight improvement in HBU with the use of both resins is only observed in the SI-filled system. The present exploratory study into the addition of resins demonstrates the potential to significantly improve the overall performance of aircraft tire retreads, justifying more in-depth investigations into this possibility in real tires.


2010 ◽  
Vol 83 (1) ◽  
pp. 97-122 ◽  
Author(s):  
Xiao-Dong Pan ◽  
Paul Zakelj ◽  
Cara Adams ◽  
Akiko Neil ◽  
Greg Chaplin

Abstract The British pendulum skid tester (BPST) has been widely adopted for laboratory characterization of wet skid resistance (WSR) for rubber compounds. However, testing results are not yet well explained with material properties. For filled compounds made of the same styrene-butadiene rubber, on a Portland cement concrete surface wetted with water, WSR for compounds filled with inorganic oxides is higher than WSR for compounds filled with carbon black at the same filler volume fraction. However, such difference in WSR is eliminated under ethanol lubrication. Difference in WSR remains under ethanol lubrication between compounds filled with a reinforcing filler and compounds filled with a nonreinforcing filler. Accepting that dynamic deformation of rubber occurs in the frequency range between 103 and 106 Hz during testing with the BPST, loss tangent for the compounds is measured at various low temperatures but fails to correlate with WSR detected under water lubrication. Modification of bulk viscoelasticity from ethanol absorption should not be neglected for consideration of WSR under ethanol lubrication. During testing with the BPST, sliding noise generated by the assemblage of the spring and lever system in the pendulum with a rubber slider attached is captured under varied lubrication conditions. Both viscoelastic properties of rubber compounds and lubrication condition significantly affect sliding noise. However, no strict correlation between the intensity of sliding noise and WSR is observed. From frequency domain analysis, major components of the sliding noise lie in the frequency range between 500 and 5000 Hz for most compounds. For better understanding on testing with the BPST, modes of material deformation during dynamic sliding on a wet rough surface need to be further scrutinized.


2016 ◽  
Vol 717 ◽  
pp. 3-8 ◽  
Author(s):  
Ji Wen Liu ◽  
Tao Zhuang ◽  
Guang Shui Yu ◽  
Shu Gao Zhao

The effects of rotor speed and discharging temperature on silica 1165MP-SSBR 5025-2 interaction as well as the mechanical properties and dynamic viscoelasticity are investigated in this work. The result shows that the discharging temperature increases linearly with increase of rotation speed, leading to increase of bound rubber content. The tensile strength, elongation at break and tear strength increase firstly, and then decrease with increase of rotation speed. However, the strength at 100% and 300% deformation decrease, and then they increase. The wet skid resistance of SSBR5025-2 filled with silica 1165MP improves with increase of rotation speed and discharging temperature, and the rolling resistance decreases.


2013 ◽  
Vol 781-784 ◽  
pp. 475-478
Author(s):  
Watcharin Rassamee ◽  
Woothichai Thaijaroen ◽  
Thirawudh Pongprayoon

Natural rubber compound using different silicas, including unmodified silica, admicellar-modified silica and silica with silane coupling agent, were studied. The properties including cure characteristics, mechanical properties and dynamic properties were examined with the comparison of three compounds. The results show that cure characteristics of admicellar silica/rubber compound (Ad-Si/R) was shorter than those of unmodified silica/rubber compound (Un-Si/R) and silane coupling silica/rubber compound (Sil-Si/R). Mechanical properties of Ad-Si/R and Sil-Si/R were better than those of Un-Si/R. In addition, wet grip and rolling resistance analyzed from tan δ (5 Hz) at 0°C and 60°C, respectively, by DMA were found that the wet grip of Ad-Si/R was the best, whereas the rolling resistance of Sil-Si/R was the best, in the comparison.


2016 ◽  
Vol 89 (2) ◽  
pp. 262-271 ◽  
Author(s):  
Qingguo Wang ◽  
Jingrui Liu ◽  
Quande Cui ◽  
Xiao Xiao

ABSTRACT How to improve the wet skid resistance of rubber composites for tire tread while decreasing the rolling resistance is very important for both rubber researchers and industry. The irradiation-vulcanized elastomer particles, ultrafine fully-vulcanized powder nitrile butadiene rubber (UFPNBR), having the diameter of about 80 nm, were studied on modifying the dynamic mechanical properties of styrene butadiene rubber/natural rubber (SBR/NR) composites for tire tread. It is notable that the UFPNBR particles can improve the tanδ values of SBR/NR composites in a temperature range from −10 to 20 °C and decrease the tanδ values in the temperature range from 50 to 70 °C simultaneously, which indicates that the UFPNBR particles not only can improve the wet skid resistance but also can reduce the rolling resistance of the SBR/NR composites. On the other hand, the UFPNBR-modified SBR/NR composites also have good dynamic properties for safety operation of tires at high temperature and good tensile strength, tear strength, and fatigue properties in the range of 8 phr UFPNBR loadings.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Pongdhorn Sae-oui ◽  
Krisda Suchiva ◽  
Chakrit Sirisinha ◽  
Wenussarin Intiya ◽  
Pram Yodjun ◽  
...  

This work aimed at investigating the effects of blend ratio between styrene butadiene rubber (SBR) and butadiene rubber (BR) and SBR type (E-SBR and S-SBR) on properties of SBR/BR tire tread compounds. Influences of these parameters on properties of the tread compounds reinforced by 80 parts per hundred rubber (phr) of carbon black (CB) and silica were also compared. Results reveal that hardness, strengths, and wet grip efficiency were impaired whereas rolling resistance was improved with increasing BR proportion. Surprisingly, the presence of BR imparted poorer abrasion resistance in most systems, except for the CB-filled E-SBR system in which an enhanced abrasion resistance was observed. Obviously, S-SBR gave superior properties (tire performance) compared to E-SBR, particularly obvious in the silica-filled system. Compared with CB, silica gave comparable strengths, better wet grip efficiency, and lower rolling resistance. Carbon black, however, offered greater abrasion resistance than silica.


2020 ◽  
pp. 000-000 ◽  
Author(s):  
Xiang Wang ◽  
Jinliang Qiao ◽  
Zhifeng Zhou ◽  
Jianming Gao ◽  
Guicun Qi ◽  
...  

ABSTRACT The “magic triangle” is the most important challenge to rubber composites for the automobile industry. According to the magic triangle, it is difficult to improve the rolling resistance (energy saving), wet skid resistance (safety), and wear (life) of a tire simultaneously. However, ∼5% decrease of rolling resistance, >20% increase of wet skid resistance, and 15% decrease of wear were achieved after adding a small amount of elastomeric nanoparticle (ENP). The effect of ENP on the performances of rubber composites was expounded by characterization of the dispersion of filler and the relationship between filler and rubber. The main difference between ENPs and other nanoparticles was that ENPs acted as not only a part of filler but also as a part of rubber in rubber composites.


Sign in / Sign up

Export Citation Format

Share Document