Synthesis, Spectral Evaluation and in Silico Studies of S-Aralkylated 5-(4-methoxyphenyl)-4-phenyl-4H-1,2,4-triazole-3-thiols: As suitable Alzheimerand#39;s disease drug candidates

2021 ◽  
Vol 43 (6) ◽  
pp. 694-694
Author(s):  
Muhammad Arfan Muhammad Arfan ◽  
Sabahat Zahra Siddiqui Sabahat Zahra Siddiqui ◽  
Muhammad Athar Abbasi Muhammad Athar Abbasi ◽  
Aziz ur Rehman Aziz ur Rehman ◽  
Syed Adnan Ali Shah Syed Adnan Ali Shah ◽  
...  

Our efforts lay emphasis on synthesis of S-aralkylated 5-(4-OMeC6H5)-4-phenyl-4H-1,2,4-triazol-3-thiols like pharmacologically active candidates to counter neurodegenerative disorder; Alzheimerand#39;s disease. A synthetic strategy was instigated by esterifying 4-methoxybenzoic acid through Fisher esterificationand#39;s methodology. Hydrazinolysis of corresponding ester was performed under reflux with methanolic hydrated hydrazine to afford 4-methoxybenzohydrazide (I) which refluxing with phenyl isothiocyanate (II) in MeOH to yield a reactive intermediate (III). The later underwent base-catalyzed intermolecular cyclization to furnish 5-(4-OMeC6H5)-4H-1,2,4-triazol-3-thiol (IV). Ultimately, IV was aralkylated at thiol position with aralkyl halides V(a-l) in polar aprotic solvent and catalytic amounts of LiH to provide S-aralkylated 5-(4- OMeC6H5)-4-phenyl-4H-1,2,4-triazol-3-thiols VI(a-l). Modern spectral analysis data explicitly established all the substitutions on nucleophilic S-atom of parent 1,2,4-triazol-3-thiol ring. Effective anti-cholinesterase potential depicted in 3-(phenylpropylthio)-5-(4-OMeC6H5)-4-phenyl-4H-1,2,4-triazole; VIc (IC50; 3.26and#177;0.35 μM) against acetyl cholinesterase; AChE and 3-(phenethylthio)-5-(4-OMeC6H5)-4-phenyl-4H-1,2,4-triazole; VIb (IC50; 8.52and#177;0.54 μM) against butyrylcholinesterase; BChE enzyme as compared to standard Eserine for both enzymes (IC50; 0.04and#177;0.01 μM). Molecular modelling analyses had been conducted to recognize the interconnection of these compounds with enzymes that suggested key interactions (Docking is made to untie the active binding sites). Anti-proliferative activity results showed VIg and VIj with -Cl groups on benzylic ring as promising candidates with HCT-116 cell viability of 14.83 % and 3.09 % respectively.

2021 ◽  
Vol 26 ◽  
Author(s):  
Md. Tanvir Kabir ◽  
Md. Sahab Uddin ◽  
Sonia Zaman ◽  
Md. Sohanur Rahman ◽  
Tapan Behl ◽  
...  

: Alzheimer's disease (AD) is an age-related progressive neurodegenerative disorder that significantly affects cognitive functions in a way that causes loss of memory, thinking, and behavior. Multiple studies revealed that neuroinflammation associated with AD is linked with the amyloid-beta deposition in the brain. Elevated levels of expression of cytokines, microglial activation, nuclear factor kappa B, and reactive oxygen species play roles in ADrelated inflammatory processes. Indeed, effective therapeutic approaches are urgently required to develop therapeutic agents to prevent and treat AD. So far, many anti-AD drug candidates have failed in the clinical stages and currently available drugs only provide symptomatic treatment. In recent times, pharmacologically active phytochemicals have been found to possess promising anti-neuroinflammatory effects; therefore these natural products can be useful in the AD treatment. In this review, we have comprehensively discussed the role of neuroinflammation and the molecular processes altered by multiple steroid and terpenoid-derived phytochemicals in various AD-related neuroinflammatory pathways. Indeed, steroid and terpenoid-derived phytochemicals show important therapeutic activities, which can be useful in ameliorating and treating AD-related neurodegeneration.


Author(s):  
Dnyaneshwar Baswar ◽  
Abha Sharma ◽  
Awanish Mishra

Background: Alzheimer’s disease (AD), an irreversible complex neurodegenerative disorder, is most common type of dementia, with progressive loss of cholinergic neurons. Based on the multi- factorial etiology of Alzheimer’s disease, novel ligands strategy appears as up-coming approach for the development of newer molecules against AD. This study is envisaged to investigate anti-Alzheimer’s potential of 10 synthesized compounds. The screening of compounds (1-10) was carried out using in silico techniques. Methods: For in silico screening of physicochemical properties of compounds molinspiration property engine v.2018.03, Swiss ADME online web-server and pkCSM ADME were used. For pharmacodynamic prediction PASS software while toxicity profile of compounds were analyzed through ProTox-II online software. Simultaneously, molecular docking analysis was performed on mouse AChE enzyme (PDB ID:2JGE, obtained from RSCB PDB) using Auto Dock Tools 1.5.6. Results: Based on in silico studies, compound 9 and 10 have been found to have better drug likeness, LD50 value, and better anti-Alzheimer’s, nootropic activities. However, these compounds had poor blood brain barrier (BBB) permeability. Compound 4 and 9 were predicted with better docking score for AChE enzyme. Conclusion: The outcome of in silico studies have suggested, out of various substitutions at different positions of pyridoxine-carbamate, compound 9 have shown promising drug likeness, with better safety and efficacy profile for anti-Alzheimer’s activity. However, BBB permeability appears as one the major limitation of all these compounds. Further studies are required to confirm its biological activities.


2019 ◽  
Vol 20 (6) ◽  
pp. 1300 ◽  
Author(s):  
Natalia Piekuś-Słomka ◽  
Renata Mikstacka ◽  
Joanna Ronowicz ◽  
Stanisław Sobiak

The growing interest in anticancer hybrids in the last few years has resulted in a great number of reports on hybrid design, synthesis and bioevaluation. Many novel multi-target-directed drug candidates were synthesized, and their biological activities were evaluated. For the design of anticancer hybrid compounds, the molecules of stilbenes, aromatic quinones, and heterocycles (benzimidazole, imidazole, pyrimidine, pyridine, pyrazole, quinoline, quinazoline) were applied. A distinct group of hybrids comprises the molecules built with natural compounds: Resveratrol, curcumin, coumarin, and oleanolic acid. In this review, we present the studies on bioactive hybrid molecules of a well-known tubulin polymerization inhibitor, combretastatin A-4 and its analogs with other pharmacologically active entities. The mechanism of anticancer activity of selected hybrids is discussed considering the structure-activity relationship.


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3570 ◽  
Author(s):  
Mashooq A. Bhat ◽  
Mohamed A. Al-Omar ◽  
Ahmed M. Naglah ◽  
Azmat Ali Khan

A search for potent antitubercular agents prompted us to design and synthesize sulfamethaoxazole incorporated 4-thiazolidinone hybrids (7a–l) by using a cyclocondensation reaction between 4-amino-N-(5-methylisoxazol-3-yl)benzenesulfonamide (4), aryl aldehyde (5a–l), and mercapto acetic acid (6) resulting in good to excellent yields. All the newly synthesized 4-thiazolidinone derivatives were screened for their in vitro antitubercular activity against M. Bovis BCG and M. tuberculosis H37Ra (MTB) strains. The compounds 7d, 7g, 7i, 7k, and 7l revealed promising antimycobacterial activity against M. Bovis and MTB strains with IC90 values in the range of 0.058–0.22 and 0.43–5.31 µg/mL, respectively. The most active compounds were also evaluated for their cytotoxicity against MCF-7, HCT 116, and A549 cell lines and were found to be non-cytotoxic. Moreover, the synthesized compounds were also analyzed for ADME (absorption, distribution, metabolism, and excretion) properties and showed potential as good oral drug candidates.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Sergio Davinelli ◽  
Nadia Sapere ◽  
Davide Zella ◽  
Renata Bracale ◽  
Mariano Intrieri ◽  
...  

Alzheimer’s disease (AD) is a severe chronic neurodegenerative disorder of the brain characterised by progressive impairment in memory and cognition. In the past years an intense research has aimed at dissecting the molecular events of AD. However, there is not an exhaustive knowledge about AD pathogenesis and a limited number of therapeutic options are available to treat this neurodegenerative disease. Consequently, considering the heterogeneity of AD, therapeutic agents acting on multiple levels of the pathology are needed. Recent findings suggest that phytochemicals compounds with neuroprotective features may be an important resources in the discovery of drug candidates against AD. In this paper we will describe some polyphenols and we will discuss their potential role as neuroprotective agents. Specifically, curcumin, catechins, and resveratrol beyond their antioxidant activity are also involved in antiamyloidogenic and anti-inflammatory mechanisms. We will focus on specific molecular targets of these selected phytochemical compounds highlighting the correlations between their neuroprotective functions and their potential therapeutic value in AD.


2014 ◽  
Vol 2014 ◽  
pp. 1-22 ◽  
Author(s):  
Qiutian Jia ◽  
Yulin Deng ◽  
Hong Qing

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with two hallmarks:β-amyloid plagues and neurofibrillary tangles. It is one of the most alarming illnesses to elderly people. No effective drugs and therapies have been developed, while mechanism-based explorations of therapeutic approaches have been intensively investigated. Outcomes of clinical trials suggested several pitfalls in the choice of biomarkers, development of drug candidates, and interaction of drug-targeted molecules; however, they also aroused concerns on the potential deficiency in our understanding of pathogenesis of AD, and ultimately stimulated the advent of novel drug targets tests. The anticipated increase of AD patients in next few decades makes development of better therapy an urgent issue. Here we attempt to summarize and compare putative therapeutic strategies that have completed clinical trials or are currently being tested from various perspectives to provide insights for treatments of Alzheimer’s disease.


2021 ◽  
Author(s):  
Ritiele Heck ◽  
Thiago Anjos ◽  
Maira R Giehl ◽  
Ricardo F Schumacher ◽  
Benhur Godoi

Flavone and analogues represent an important class of biologically and pharmacologically active substances commonly found in the composition of diverse plants as part of the class of secondary metabolites. Herein, we have demonstrated an efficient and regioselective synthetic strategy for the preparation of functionalized flavones through sequential demethylation/6-endo-dig intramolecular cyclization of propyn-1-ones, using catalytic amounts of base in the presence of a thiol, by employing NMP as the solvent. The reactions proceeded smoothly under transition-metal-free and open to air conditions, furnishing the desired six-membered heterocycles in moderate to excellent yields, in short reaction time.


2020 ◽  
Author(s):  
Mukesh Kumari ◽  
Sumit Tahlan ◽  
Balasubramanian Narasimhan ◽  
Kalavathy Ramasamy ◽  
Siong Meng Lim ◽  
...  

Abstract Background: Triazole is an important heterocyclic moiety that occupied a unique position in heterocyclic chemistry, due to its large number of biological activities. It exists in two isomeric forms i.e. 1,2,4-triazole and 1,2,3-triazole and used as core molecule for the design and synthesis of many medicinal compounds. 1,2,4-Triazole possess broad spectrum of therapeutically interesting drug candidates such as analgesic, antiseptic, antimicrobial, antioxidant, antiurease , anti-inflammatory, diuretics, anticancer, anticonvulsant, antidiabetic, antimigrain agents.Methods: The structure of all synthesized compounds were characterized by physicochemical properties and spectral means (IR and NMR). The synthesized compounds were evaluated for their in vitro antimicrobial activity against Gram-positive (B. subtilis), Gram-negative (P. aeruginosa and E. coli) bacterial and fungal (C. albicans and A. niger) strains by tube dilution method using ciprofloxacin, amoxicillin and fluconazole as standards. In-vitro antioxidant and anti-urease screening was done by DPPH assay and indophenol method, respectively. The in-vitro anticancer evaluation was carried out against MCF-7 and HCT116 cancer cell lines using 5-FU and cisplatin as standards.Results, discussion and conclusion: The biological screening results reveal that the compounds T5 (MICBS, EC = 24.7µM, MICPA, CA = 12.3 µM) and T17 (MICAN = 27.1µM) exhibited potent antimicrobial activity as comparable to standards ciprofloxacin, amoxicillin (MICCipro = 18.1µM, MICAmo = 17.1µM) and fluconazole (MICFlu = 20.4µM), respectively. The antioxidant evaluation showed that compounds T2 (IC50 = 34.83 µg/ml) and T3 (IC50 = 34.38 µg/ml) showed significant antioxidant activity and comparable to ascorbic acid (IC50 = 35.44 µg/ml). Compounds T3 (IC50 = 54.01µg/ml) was the most potent urease inhibitor amongst the synthesized compounds and compared to standard thiourea (IC50 = 54.25 µg/ml). The most potent anticancer activity showed by compounds T2 (IC50 = 3.84 μM) and T7 (IC50 = 3.25 μM) against HCT 116 cell lines as compared to standard 5-FU (IC50 = 25.36 μM).


2020 ◽  
Vol 10 (7) ◽  
pp. 466 ◽  
Author(s):  
Takayuki Katayama ◽  
Jun Sawada ◽  
Kae Takahashi ◽  
Osamu Yahara

Parkinson’s disease (PD) is a common neurodegenerative disorder; however, well-established biochemical markers have not yet been identified. This review article covers several candidate cerebrospinal fluid (CSF) biomarkers for PD based on the recent literature and meta-analysis data. The decrease of α-synuclein in PD is supported by meta-analyses with modest reproducibility, and a decrease of amyloid β42 is seen as a prognostic marker for cognitive decline. Tau, phosphorylated tau (p-tau), and neurofilament light chains have been used to discriminate PD from other neurodegenerative disorders. This article also describes more hopeful biochemical markers, such as neurotransmitters, oxidative stress markers, and other candidate biomarkers.


Sign in / Sign up

Export Citation Format

Share Document