scholarly journals Antimicrobial Activity of Goat Colostrum Against Bacterial Strains Causing Food Poisoning Diseases

2020 ◽  
Vol 21 (3) ◽  
pp. 167
Author(s):  
Triana Setyawardani ◽  
Juni Sumarmono ◽  
Heni Risqiati ◽  
Setya Agus Santosa

The study was aimed to investigate the antimicrobial activity of bacterial isolates L.plantarum 3CT7 and 20CT8 from goat colostrum. The antimicrobial activity of cell-free supernatant was tested using a well-diffusion method on several indicators: temperature, time of storage, and pH. Antimicrobial activity was recorded in both isolates at pH 2.0; 4.0; 6.0 and 8.0, temperature at 0, 50 and 100 oC, and in cold storage for 0, 15, 30, 45 and 60 days. L.plantarum 7CT3 and L.plantarum 20CT8  have a bigger zone of inhibition than that of Pseudomonas spp. as compared to other bacteria. Testing the cell-free activity was aimed to investigate the metabolite inhibition by L.plantarum. The isolates were capable of inhibiting all pathogenic bacteria in the experiment (S. thypimurium, E. coli, and S. aureus)  as evidenced from the similar zone of inhibition from 15.83 to 16.06 mm. Isolates (L. plantarum 7CT3 dan 20CT8) exhibit inhibitory properties against S.thypimurium, S. aureus, Pseudomonas spp.. and L. monocytogenes at 0, 50 and 100oC. L.plantarum 7CT3 and L.plantarum 20CT8 exhibit antimicrobial activity during cold storage. Both isolates grown in the range of pH from 2 to 8 could inhibit S. thypimurium, E. coli, S. aureus and Pseudomonas spp.  In general, the two isolates are the potential antimicrobial activity with broad ranges of pH, temperature and storage time.

Author(s):  
B. R. Malathy ◽  
Sweetlin Ajitha P ◽  
Sangeetha K. S ◽  
Swetha Thampy ◽  
Kamala G

Essential oils (EOs) are natural extracts from the seeds, stems, roots, flowers, bark and other parts of the plant prepared by steam distillation. They are complex, volatile, natural compounds formed by aromatic plants as secondary metabolites. They are known for their bactericidal, virucidal, fungicidal, sedative, anti-inflammatory, analgesic, spasmolytic and locally anesthetic properties. They are generally composed of a combination of substances like terpenes, phenolics, aldehydes or alcohols. The complex composition and different mechanisms of action of EOs may be an advantage over other antimicrobials to prevent the development of resistance of pathogenic bacteria. With this background, the aim of this study was to evaluate the antimicrobial activity of five essential oils like basil, lime, rosemary, thyme and canada balsam against 14 microbes. The effects of essential oil on the selected microbes were determined by agar well diffusion method. The zone of inhibition was observed and measured in millimeter. Essential oils which showed inhibitory diameter >15 mm were further tested to determine the minimum inhibitory concentration (MIC). S. aureus, E. coli, S. mutans, S. sanguinis, C. albicans and M. furfur were inhibited by all essential oils. K. pneumoniae, P. aeruginosa and E .faecalis were inhibited only by thyme and not by other essential oils. The MIC values ranged from 50% to 0.10%. The least MIC value of 0.10% was shown by thyme and basil to S. aureus, thyme to E.coli and all essential oils against C. albicans except lime.


Author(s):  
Amita Shobha Rao ◽  
Shobha Kl ◽  
Prathibha Md’almeida ◽  
Kiranmai S Rai

  Objective: Infections caused by Gram-negative bacteria are important causes of morbidity and mortality. Extracts of plants and herbs such as Clitorea ternatea are used as diuretic. This work attempts to find out antimicrobial activity of aqueous and alcoholic extract of C. ternatea roots against Pseudomonas aeruginosa (ATCC 27853), Escherichia coli (ATCC 25922), clinical strains of Klebsiella pneumoniae, and Candida albicans.Methods: The agar well-diffusion method was done using Mueller Hinton agar and Sabouraud’s dextrose agar. The microorganism grown in peptone water was inoculated into culture medium. 4 mm diameter well punched into the agar was filled with 20 μl of aqueous and alcoholic root extracts C. ternatea extracts in various concentrations (100-25 μg/ml). The plates were incubated and antimicrobial activity was evaluated.Results: Aqueous root extract of C. ternatea with the concentration of 100 μg/ml showed zone of inhibition against E. coli (ATCC 25922) 18 mm, P. aeruginosa (ATCC 27853) 14 mm, multidrug resistant strain of K. pneumoniae 15 mm. Alcoholic extract of C. ternatea with the concentration of 100 μg/ml showed zone of inhibition of 35 mm against E. coli (ATCC 25922), P. aeruginosa (ATCC 27853) 22 mm, and multidrug resistant strain of K. pneumoniae 28 mm. C. albicanswas resistant to both extract of C. ternatea root. Conclusions: Alcoholic extract of C. ternatea is a better antibacterial agent against multidrug resistant Klebsiella species and other Gram-negative pathogens. Further, studies are required to identify active substances from the alcoholic extracts of C. ternatea for treating infections.


Author(s):  
M. Binigha ◽  
R. Gayatri Devi ◽  
J. Selavaraj ◽  
A. Jothi Priya

Tecoma stans is a flowering plant belonging to the family Bignoniaceae. It is the floral emblem of the Bahamas. Abutilon indicum belongs to the family Malvaceae. It is also called Indian Mallow. Tecoma stans and Abutilon indicumhave antimicrobial activity and can be used in producing antibiotics. There is an urgent need to produce new antibiotics as there is an increase in the development of pathogen resistant drugs. The aim of this study was to compare the antimicrobial activity of ethanolic extract of Tecoma stansand Abutilonindicum leaves. E.faecalis bacteria were maintained in nutrient agar slopes. The powder of the two herbs, were subjected to extraction by Soxhlet extractor and was concentrated to dry residue by Agar well diffusion method. The nutrient broth was inoculated with bacterial strains. The culture was adjusted to 0.5McFarland turbidity standard. Lawn culture was done in Muller-Hinton agar plate and then the plates were dried. A 6 mm diameter well is bored for different concentrations. The extracts were introduced into the well and allowed to stand for 24 hrs. The antibacterial activity was determined by measuring the zone of inhibition. The present finding on the antimicrobial potential of Abutilon indicum and Tecoma stands showed that the two plants have growth inhibitory activity against oral pathogen E. faecalis. Abutilon indicum has a zone of inhibition greater than Tecoma stans. Abutilon indicum exhibited better activity compared to Tecoma stans.


2021 ◽  
Vol 14 (4) ◽  
pp. 1730-1736
Author(s):  
Kalpana. P. R

Chitosan, a cationic biopolymer is a major derivative of chitin. It is biocompatible, non-toxic and environ-friendly material and has broad spectrum antimicrobial activity. However, it is less effective in neutral or basic conditions due to its solubility only in acidic medium. Therefore, chemical modification with suitable groups is necessary to enhance the potency of chitosan. The present study was mainly conducted to explore the effect of structural modifications on antimicrobial potential of chitosan. N-Methyl, N-Ethyl and N-Propyl pyrrole were reacted with N-chloroacyl-6-O-triphenylmethylchitosan prepared by stepwise modification of chitosan to form N-Methyl, N-Ethyl and N-Propyl pyrrole derivatives of chitosan. Structural characterization of these pyrrole derivatives was done by IR, NMR, XRD, DSC and Elemental Analysis. The gram-negative bacterium Escherichia coli, gram-positive bacterium Staphylococcus aureus were selected for antibacterial activity and the fungus C. albicans was selected for antifungal activity by agar diffusion method and MIC method. Antimicrobial activity of the N-Methyl, N-Ethyl and N-Propyl pyrrole derivatives on E. coli, S. aureus and C. albicans showed an inhibitory effect on all the organisms. The potency of inhibition was found to be varied with the substitutions. The maximum activity was shown by N-pyrrolylpropylchitosan against E. coli (zone of inhibition 1.2±0.05cm, MIC 0.15±0.03mg/ml), S. aureus (zone of inhibition 1.4±0.03cm, MIC 0.15±0.01mg/ml), C. albicans (zone of inhibition 0.8±0.03cm, MIC 0.2±0.03mg/ml). The study also confirmed that all the three derivatives exhibited higher inhibition than that of chitosan against E. coli (zone of inhibition 0.7±0.03cm, MIC 0.09±0.02mg/ml), S. aureus (zone of inhibition 0.8±0.03cm, MIC 0.09±0.02mg/ml), C. albicans (zone of inhibition 0.6±0.03cm, MIC 0.09±0.03mg/ml). Results demonstrated that these three N-alkylpyrrole chitosan derivatives exhibited improved potency and hence can have the more applicability as antimicrobials.


Author(s):  
SHIBU GEORGE ◽  
MEVLIN JOY

Objective: The objective of this study was to evaluate the antimicrobial activity of methanolic extract of Ludwigia parviflora L. using standard bacterial strains and compare its activity with that of standard antibiotics. Methods: The antibacterial activity and antibiotic susceptibility tests were done by disk diffusion method using MTCC bacterial strains. Results: The study revealed that the methanolic extract of the whole plant of L. parviflora L. was effective to inhibit the growth of Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli. Among the tested strains, S. aureus, P. aeruginosa, K. pneumoniae, and E. coli were more susceptible to the methanolic extract of L. parviflora than the commonly using antibiotic tetracycline 30 mcg. The activity of methanolic extract was also higher than the activity of gentamicin 10 mcg against the P. aeruginosa. Conclusion: The study concluded that the crude methanolic extract of the whole plant of L. parviflora L. is a good source for antibacterial agent against S. aureus, P. aeruginosa, K. pneumoniae, and E. coli. Hence, this plant can be used as a natural alternative to the common antibiotics such as gentamicin and tetracycline against common bacterial infections after validating its pharmacological and toxicological activities.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Iffat Naz

The present study is focused on the assessment of the antimicrobial activity of cerumen and antibiotics against bacteria isolated from ear pus samples. Thus, a total of 50 ear pus samples were collected from infected patients using sterile swabs and were screened using pure culture techniques. Total of 04 different bacterial isolates were identified while, the prevalence data revealed that Pseudomonas spp., were dominant (58%, n = 29) among isolated bacteria followed by Staphylococcus spp., (22%, n = 11), Escherichia coli (14%, n = 7) and Proteus spp., (6%, n = 3). Further, bioassay revealed that Pseudomonas spp., and Staphylococcus spp., were most sensitive to Clindamycin (94.73%) while displayed resistant to Ciprofloxacin and Ampicillin. Similarly, E. coli and Proteus spp., were most sensitive to Ciprofloxacin (92.8-95.21%) as compared to the other antibiotics. Moreover, antibacterial activity of cerumen was also assessed against test organisms and its maximum activity was observed against Pseudomonas spp., (90% equivalent to Clindamycin potency) and Staphylococcus spp., (60% equivalent to Amoxicillin potency) while least effective against E. coli (36%) and Proteus spp., (22%). Thus, it was concluded that the antibacterial activity of cerumen might be due to the presence of potential chemicals i.e. flavonoids and terpenoids.


2021 ◽  
Vol 72 (1) ◽  
pp. 2703
Author(s):  
I VAR ◽  
S UZUNLU ◽  
I DEĞIRMENCI

The use of natural food additives is currently a rising trend. In the present study, the aim was to determine the antimicrobial effects of plum, pomegranate, Seville orange and sumac sauces on E. coli O157:H7,E. coli type I,Listeriamonocytogenes, Listeria ivanovii, Salmonella Typhimurium and Staphylococcus aureus. Different concentrations (1%, 10%, 100%, v/v) of the sauces were tested on the studied bacteria in vitro using the agar diffusion and minimal inhibition concentration (MIC) methods. The results showed that the sumac sauce had the highest antimicrobial activity. The Seville orange, plum and pomegranate sauces also exerted antimicrobial activity in descending order. The antimicrobial activity of the fruit sauces was more effective at a concentration of 100% than at 10% and 1%, v/v. The most inhibitory effect was recorded for sumac sauce at a concentration of 100% (v/v) on L.monocytogenesand E. coli O157:H7. The findings of the MIC method aligned with the agar diffusion method. In addition, the in situ(food method) antimicrobial effect of the sauces on the indigenous microflora of chicken breast samples sold in stores was determined. Chicken samples hosting aerobic mesophilic bacteria, coliforms and E. coli were treated for two hours at 4 °C with plum, pomegranate, Seville orange and sumac sauces and were then monitored. The findings revealed that the Seville orange and sumac sauces were the most effective in reducing the indigenous microbial growth on the chicken samples. The plum sauce showed higher antimicrobial activity than pomegranate sauce. The phenolic content and acidity of the samples significantly (P< 0.05) affected the antimicrobial activity both in vitro (agar diffusion and MIC) and in situ (chilled chicken breast). In conclusion, the sumac and Seville orange sauces were found to be the most promising natural antibacterial agents, and their use could be recommended, for example, in catering services to reduce the risk of foodborne illness.


2020 ◽  
Vol 14 (1) ◽  
pp. 7
Author(s):  
Wan Razarinah Wan Abdul Razak

Food poisoning is one of the most common diseases in the world in which are caused by ingesting foodborne pathogens. Study was conducted to determine the antimicrobial activity of Murayya koenigii leaves extract on foodborne pathogens namely Salmonella typhi ATCC 14028, Staphylococcus aureus ATCC 25923, Bacillus cereus ATCC 11778, Escherichia coli ATCC 25922, Candida albicans ATCC 10231 and Aspergillus niger ATCC 16404. The antimicrobial activity was determined at four different concentrations of 150 mg/mL, 200 mg/mL, 250 mg/mL and 300 mg/mL S. typhi was the most sensitive to M. koenigii extract at concentration 300 mg/mL with zone of inhibition diameter mean value of 8.67 ± 0.67 mm followed by E. coli, S. aureus and B. cereus with zone of inhibition diameter mean values of 8.33 ± 0.88 mm, 8.00 ± 0 mm and 7.67 ± 0.33 mm. C. albicans and A. niger were resistant to the extract. The minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) against S. typhi, S. aureus, B. cereus and E. coli were 75 mg/mL, 150 mg/mL 125 mg/mL and 100 mg/mL respectively. There were no significant differences on the concentrations of M. koenigii extract on the zone of inhibition diameter produced (p=0.056). M. koenigii leaves extract exhibit antibacterial activity but no antifungal activity.


2016 ◽  
Vol 5 (09) ◽  
pp. 4885 ◽  
Author(s):  
Khushbu Pandey ◽  
Mahendra Singh* ◽  
Bharat Pandey ◽  
Anshulika Upadhyaya ◽  
Kamal K. Pande

The present study was carried out for phytochemical screening of principle bioactive compounds and antimicrobial activity in Elaeocarpus ganitrus Roxb., Phytochemical analysis revealed the presence of saponin, terpenoid, steroid, saponin, flavonoid, tannin and alkaloid. The petroleum, ether, chloroform, methanol, acetone and aqueous extracts were subjected to antimicrobial activity against bacterial strains Staphylococcus aureus, Pseudomonas, E. coli and Bacillus subtilis against anti-fungal strains A.awamori, A.fumigatus, Rhizopus oryzae, Trichoderma viridae and C.oryzae. The antibacterial and antifungal activity was evaluated by disc-diffusion method.


Author(s):  
Chidepudi D S L N Tulasi

Objective: In the present study, the phytochemical constituents of Drosera spatulata, have been evaluated and antimicrobial activity was screened against respiratory tract infectious microbes.Methods: The phytochemicals present in Drosera spatulata by qualitative phytochemical assays and the antimicrobial activity along with MIC, MBC and BIC were determined against S. aureus, Klebsiella pneumonia and S.Pneumonia the causative organisms of pulmonary infections, mainly effects the nasal pharynx, trachea, and lungs as well as Aspergillus niger.Results: Aqueous, ethanol, methanol extracts of thick roots, open flower and hair of Drosera spatulata var bakoensis against this pathogenic bacteria and fungi showed high zone of inhibition which estimated by disc-diffusion method as well as minimum inhibition concentration manifestation by the broth microdilution assay followed MBC and BIC. The values of MIC, MBC and BIC obtained were between 0.3-0.9, 0.36-2.25, 0.12 - 0.37 mg/mL. The results revealed that the plant extracts of Drosera spatulata var bakoensis have high potential even at low concentrations values against bacteria and fungi cultures and this results validated by the presence of high amounts of alkaloids, quinones, anthraquinones, flavonoids in the plant extracts. Conclusion: In the present study, the results showed the presence of high amounts of alkaloids, flavonoids, quninoes, anthraquinones, terpinoids in Drasera spatulata plant.  In the antibacterial and antifungal activity, the ethanol and methanol extracts significantly showed the activity against the tested respiratory disease causing bacteria and antifungal properties with zone of inhibition showed more than aqueous extracts at very low concentrations


Sign in / Sign up

Export Citation Format

Share Document