scholarly journals Kinetics of Adsorptive Removal of Drimarene Brilliant Red from Aqueous Solution Using Untreated Agricultural Residues

Author(s):  
Ch. Tahir Mehmood ◽  
Muhammad Arshad ◽  
Tayyab Ashfaq ◽  
Muhammad Bilal ◽  
Muhammad Shafiq ◽  
...  

The potential of untreated banana and orange peels, and rice husk was tested for drimarenebrilliant red (DBR) dye removal from aqueous solution. Kinetics was also studied in a batch experiment.Dose of adsorbents varied from 6 to 12 g/L, particle sizes 0.2 and 0.8 mm and contact time 2–32 h. Highdose and small particle size favoured DBR removal efficiency significantly. The highest adsorption capacitywas shown by rice husk (10 mg/g), then orange peels (9 mg/g) and the lowest by banana peels (4 mg/g).Langmuir isotherm (R2=0.99) and pseudo-second order model (R2=0.99) depicted well the equilibriumand best explained the kinetics for rice husk, respectively. Initial adsorption appeared as pore diffusionin all the cases and film diffusion was controlling the rate, later on. Based upon the analytical data, a simplemodel has been presented that fitted best to describe rice husk adsorption kinetics.

2014 ◽  
Vol 937 ◽  
pp. 9-16
Author(s):  
Xiao Mei Zhang ◽  
Hong Zhan Li ◽  
Man Li Cao ◽  
Chao Yue Chen

A crosslinked β-cyclodextrin (β-CD) polymer (PCD) was synthesized by using maleamic acid as a crosslinked agent, and its adsorption behavior for basic fuchsin in aqueous solution was investigated. The adsorption isotherms could be well fitted by the Langmuir adsorption equation. On the basis of the Langmuir analysis, the maximum adsorption capacities were determined to be 33.56 mg·g-1 at 308K. The kinetics of adsorption followed the pseudo-second-order model.


2013 ◽  
Vol 683 ◽  
pp. 339-342
Author(s):  
Bing Li ◽  
Yong Chun Dong

The grafted polytetrafluoroethylene (PTFE) fibers were prepared with acrylic acid and then coordinated with Fe (III) ions. The effect of initial Fe (III) ion concentration and temperature on coordination process was investigated. In addition, the kinetics of the coordination process was also evaluated. The results indicated that increasing initial Fe (III) concentration and temperature significantly improve the amount of Fe (III) ions coordinated onto the fiber. The coordination between them can be described by Langmuir and Freundlich isotherm equations. On the other hand, coordinating process also follows a pseudo-second order model. Moreover, a higher initial Fe (III) ion concentration gives rise to an enhanced initial Fe (III) ion coordination rate.


2014 ◽  
Vol 809-810 ◽  
pp. 907-911
Author(s):  
Jun Long Wang ◽  
Jie Hou ◽  
Ting Jiang ◽  
Yong Jun He ◽  
Yao Dong Liang

Dry waters with an average diameter of 82 μm were prepared by a high speed mixed route. The formaldehyde absorption kinetics of dry waters was investigated by simulating indoor formaldehyde pollution in glass chamber. The results showed that pseudo-second order model could be used to simulate the adsorption process; the adsorption rate was highest in the initial 60 minutes; when the adsorption lasted for 180 minutes, the adsorption reached equilibrium.


DYNA ◽  
2016 ◽  
Vol 83 (196) ◽  
pp. 223-228 ◽  
Author(s):  
Jhonnathan Machado-Infante ◽  
Gustavo Ramírez-Caballero ◽  
Martha Juliana Barajas Meneses

<p>In Colombia, a mineral rich in MnO<sub>2</sub> is extracted from the mines of Mallama, Nariño. In this work we studied the adsorption capacity of this mineral for Fe(II) dissolved in aqueous solution of open systems. The characterization was done through ICP-AES, XRF and Raman spectroscopy. The effect of different pretreatments on the mineral with oxidizing agents such as KMnO<sub>4</sub> and NaClO was evaluated. Studies of equilibrium and kinetics of adsorption showed that the mechanism fits well to the Langmuir isotherm and its kinetics to a model of pseudo-second order. At the conditions studied was found that the adsorption capacity for the mineral modified with KMnO<sub>4</sub> and NaOCl were 59.209 and 51.279 mg/g respectively. It is concluded that the mineral is a potential alternative in water treatment.</p>


2013 ◽  
Vol 367 ◽  
pp. 45-49
Author(s):  
Ying Hong ◽  
Ze Hui Zhong ◽  
You Shi Liu

Chitosan nanoparticles were prepared by crosslinkingusing TPP. SEM showed that chitosan nanoparticles were successfully obtained.The adsorption characteristics of chitosan nanoparticles were evaluated. Theresults demonstrated that chitosan nanoparticles were suitable for adsorbent toremoval Pb2+. The parameters for the adsorption of Pb2+by chitosan nanoparticles were also determined. It was shown that chitosannanoparticles were fit for Langmuir’s isotherm model and that the adsorptionkinetics of Pb2+ described by the pseudo-second-order model could bebest.


2020 ◽  
Vol 81 (10) ◽  
pp. 2270-2280
Author(s):  
Yonggang Xu ◽  
Tianxia Bai ◽  
Yubo Yan ◽  
Yunfeng Zhao ◽  
Ling Yuan ◽  
...  

Abstract It is of great significance to remove Cr(VI) from water as a result of its high toxicity. Biochar from corn straw was modified by different acids (HNO3, H2SO4 and H3PO4) to remove Cr(VI) from aqueous solution. To estimate the removal mechanisms of Cr(VI) by the acid-modified biochars, batch experiments were performed in the light of contact time, Cr(VI) concentration, and pH, and the characteristics of acid-modified biochars before and after Cr(VI) adsorption were investigated by Fourier transform infrared spectra (FTIR) and X-ray photoelectron spectroscopy (XPS). The adsorption kinetics of Cr(VI) by acid-modified biochars were consistent with the pseudo-second-order model, and the adsorption isotherm obeyed the Freundlich model. Furthermore, the acid- modified biochars could supply more oxygen-containing functional groups (-COOH and -OH) as electron donor (e−) and hydrogen ion (H+) to enhance the reduction of Cr(VI) to Cr(III), resulting in enhanced removal of Cr(VI). HNO3-modified biochar exhibited the highest removal efficiency of Cr(VI). In general, the acid modifition of biochar was an effective method to increase the removal of Cr(VI).


2020 ◽  
Vol 38 (9-10) ◽  
pp. 483-501
Author(s):  
Nguyen Thi Huong ◽  
Nguyen Ngoc Son ◽  
Vo Hoang Phuong ◽  
Cong Tien Dung ◽  
Pham Thi Mai Huong ◽  
...  

The Fe3O4/Talc nanocomposite was synthesized by the coprecipitation-ultrasonication method. The reaction was carried out under a inert gas environment. The nanoparticles were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), fourier-transform infrared spectroscopy (FT-IR) and vibrating sample magnetometry techniques (VSM), the surface area of the nanoparticles was determined to be 77.92 m2/g by Brunauer-Emmett-Teller method (BET). The kinetic data showed that the adsorption process fitted with the pseudo-second order model. Batch experiments were carried out to determine the adsorption kinetics and mechanisms of Cr(VI) by Fe3O4/Talc nanocomposite. The adsorption process was found to be highly pH-dependent, which made the material selectively adsorb these metals from aqueous solution. The isotherms of adsorption were also studied using Langmuir and Freundlich equations in linear forms. It is found that the Langmuir equation showed better linear correlation with the experimental data than the Freundlich. The thermodynamics of Cr(VI) adsorption onto the Fe3O4/Talc nanocomposite indicated that the adsorption was exothermic. The reusability study has proven that Fe3O4/Talc nanocomposite can be employed as a low-cost and easy to separate.


2020 ◽  
Vol 168 ◽  
pp. 00050
Author(s):  
Vadym Korovin ◽  
Yurii Pohorielov ◽  
Yurii Shestak ◽  
Oleksandr Valiaiev ◽  
Jose Luis Cortina

Kinetics of scandium recovery by TVEX containing tributyl phosphate was studied from the clarified leaching solution of salt chlorinator cake. To assess the contribution of each diffusion phase, experimental data were analyzed using a graphic method. To define the contribution of chemical interaction into the scandium extraction process, recovery kinetics was quantitatively described using pseudo-first order, pseudo-second order kinetic models and Elovich equation in linearized form. It was established that recovery kinetics was most accurately described with the pseudo-second-order model.


2018 ◽  
Vol 77 (5) ◽  
pp. 1313-1323 ◽  
Author(s):  
Jianjun Zhou ◽  
Xionghui Ji ◽  
Xiaohui Zhou ◽  
Jialin Ren ◽  
Yaochi Liu

Abstract A novel magnetic bio-adsorbent (MCIA) was developed, characterized and tested for its Cd(II) removal from aqueous solution. MCIA could be easily separated from the solution after equilibrium adsorption due to its super-paramagnetic property. The functional and magnetic bio-material was an attractive adsorbent for the removal of Cd(II) from aqueous solution owing to the abundant adsorption sites, amino-group and oxygen-containing groups on the surface of Cyclosorus interruptus. The experimental results indicated that the MCIA exhibited excellent adsorption ability and the adsorption process was spontaneous and endothermic. The adsorption isotherm was consistent with the Langmuir model. The adsorption kinetic fitted the pseudo-second-order model very well. The maximum adsorption capacity of Cd(II) onto MCIA was 40.8, 49.4, 54.6 and 56.6 mg/g at 293, 303, 313 and 323 K, respectively. And the MCIA exhibited an excellent reusability and impressive regeneration. Therefore, MCIA could serve as a sustainable, efficient and low-cost magnetic adsorbent for Cd(II) removal from aqueous solution.


2019 ◽  
Vol 80 (5) ◽  
pp. 884-891
Author(s):  
Daying Chen ◽  
Nasi Tu ◽  
Changkun Si ◽  
Meilin Yin ◽  
Xiaohui Wang

Abstract Mesoporous TiO2 has been prepared by a brief and simple sol–gel processing and applied for the removal of Cu(II) from aqueous solution. The adsorption behavior of mesoporous TiO2 for Cu(II) was investigated using batch experiments. Results showed that the pseudo-second-order model and Langmuir isotherm were more accurate to describe the kinetics process and adsorption isotherm. Mesoporous TiO2 adsorbent displayed excellent Cu(II) adsorption efficiency (195.52mg g−1). The thermodynamic parameters showed that the adsorption was spontaneous and endothermic. It was also found that mesoporous TiO2 could be used at least seven times without obvious loss of its original adsorption efficiency. Therefore, the obtained mesoporous TiO2 could be employed as an effective and low-cost adsorbent for removal of Cu(II) from contaminated effluents.


Sign in / Sign up

Export Citation Format

Share Document