scholarly journals The Spatial Distribution of Root System in M9 Rootstock Is Affected by Apple Cultivar and Tree Age

2019 ◽  
Vol 7 (2) ◽  
pp. 160
Author(s):  
Fadil Thomaj ◽  
Hafuz Domi ◽  
Glenda Sallaku ◽  
Astrit Balliu

The aim of study was to evaluate how different apple cultivars affect root morphology and spatial distribution of rootstock. The experiment was conducted with three different cultivars; ‘Golden delicious’, ‘Gala’ and ‘Starking’ grafted on M9 dwarfing rootstock. Nine and fourteen years old, French vertical axe trained trees were included in the experiment. The trench profile method was chosen to study the morphology of root system and the counted root intersects were divided into three classes; fine roots (<2mm), medium-sized roots (2-5 mm), and coarse roots (>5 mm). To analyze the spatial distribution of root system, the respective cumulative number of fine roots at three successive distances from the base of tree trunk and the cumulative number of fine roots in three successive distances from soil surface were expressed as percentage versus the total fine roots. Significant effects of scion on the total number of fine roots, and as well, on their side and in depth distribution were found. The pattern of root distribution is changing over years, tending to shift the bulk of absorptive roots further from the tank and deeper into the soil. This tendency was more visible to high yielding and late maturity cultivars.

2020 ◽  
Vol 36 (5) ◽  
pp. 807-814
Author(s):  
Xiaolin Song ◽  
Xiaodong Gao ◽  
Paul Reese Weckler ◽  
Wei Zhang ◽  
Jie Yao ◽  
...  

HighlightsAn in-situ rainwater collection and infiltration (RWCI) method is a rainwater catchment utilization techniqueRWCI is advantageous for increasing sustainable plant-avaibale water to increase drought resistanceRWCI significantly increased the amount of water and nutrients in the rhizosphere for uptake by apple tree rootsABSTRACT. A two-year field experiment was undertaken to determine the spatial distribution of plant-available water and roots in soil profiles under two rainfall control systems—an in-situ rainwater collection and infiltration (RWCI) method and a semi-circular basin (SCB)—in apple orchards in the Loess Plateau of China. The results showed that the RWCI treatments with a soil depth of 40 cm (RWCI40), 60 cm (RWCI60), and 80 cm (RWCI80) significantly increased plant-available water in different seasons and depths and increased root growth of apple trees in the experimental soil profile (0–200 cm). At 0–200 cm soil depth, then RWCI treatments had significantly higher (91.86%-110.01%) mean plant-available water storage (PAWS) than the SCB treatment in both study years (2015 and 2016). From 0–120 cm soil depth, the RWCI60 treatment had significantly higher growing season mean PAWS than RWCI40 and RWCI80; however, RWCI80 had the highest from 120–200 cm. From 0–60 cm, the RWCI treatments had 25.84%-36.86% a smaller proportion of root system than the SCB treatment. However, from 60–120 cm, the proportion of root system increased by 131.53% (RWCI40), 157.95% (RWCI60) and 129.98% (RWCI80), relative to SCB. From 0–200 cm, the RWCI treatments had 1.49–1.94 times more root dry weight density than the SCB treatment. The highest concentration of fine roots occurred in the RWCI treatments. Thus, RWCI enabled roots to absorb more water and nutrients from a wider wetted area and improved drought resistance. Keywords: Drought resistance, Fine roots, Loess Plateau, Plant-available water, Spatial distribution.


1994 ◽  
Vol 24 (6) ◽  
pp. 1186-1192 ◽  
Author(s):  
P.E. Heilman ◽  
G. Ekuan ◽  
D. Fogle

Mean annual aboveground leafless biomass production averaged 14.8, 11.4, and 24.3 Mg•ha−1•year−1 at harvest at 4 years of age for Populustrichocarpa Torr. & Gray, Populusdeltoides Marsh., and P. trichocarpa × P. deltoides hybrids, respectively. These trees were planted at 1 × 1 m spacing on a medium- to coarse-textured alluvial soil in western Washington. Branches accounted for 13.2–20.3% of the aboveground weight. Total weight of stumps and coarse roots at harvest varied from 12.3 to 29.6 Mg•ha−1, or 22–33% of the weight of aboveground leafless biomass. Small and fine roots sampled to a depth of 3.17 m using soil cores amounted to an additional 6.6–11 Mg•ha−1 of roots. Stumps and all roots as a ratio of aboveground biomass (root/shoot ratio) ranged from 0.34 to 0.42, with hybrids accounting for the entire range of values present. Mass of the fine roots (less than 0.5 mm diameter) ranged from 4.0 to 6.5 Mg•ha−1, or an average of 6.8% of the aboveground biomass. The smallest of the fine roots measured 0.06 mm in diameter. Specific root length of fine roots averaged 50.7 m•g−1 for P. deltoides, 42 m•g−1 for P. trichocarpa, and 30–47 m•g−1 for hybrids. Total length of fine roots to a depth of 3.17 m ranged from 179 000 to 284 000 km•ha−1. Density of fine roots by length per unit soil volume was greatest at the surface with the range of means for clones in the top 0.18 m being 2.4–6.3 cm•cm−3; at 1.0–3.17 m soil depth, density was 0.02–0.6 cm•cm−3. For two of the hybrid clones, the density of fine roots at the soil surface was half that of the other clones. The distribution of fine roots in the stratified soil profile was correlated with soil depth, Kjeldahl N, and organic matter, with the latter two parameters showing the highest coefficients of determination (0.73 and 0.71, respectively). In the more sandy but layered subsoil (0.36–3.17 m depth), soil depth, Kjeldahl N, and sand content were most strongly correlated with fine root density, with depth and sand content giving the highest coefficients of determination (0.32 and 0.31, respectively). Roots in sandy subsoil were coarser and much less branched than in adjacent finer textured layers.


Author(s):  
Viktor Gjamovski ◽  
Marjan Kiprijanovski ◽  
Tosho Arsov

This paper analyses the distribution of root systems of nine dwarf apple rootstocks (M.9 T 984, M.9 T 337, Jork 9, Mark 9, Budagowski 9, M.9 EMLA, Pajam 1, Pajam 2 and Supporter 4). All rootstocks were grafted with apple cultivar Granny Smith. The study was performed in the experimental orchard established in the Prespa region (Resen, R. Macedonia). The experimental orchard was established in 2004, with a planting distance 3.5 m x 1.5 m. At the end of the 7th growing season following characteristics were evaluated: length and weight of the fine (fibrous) and coarse roots, and depth distribution of the root system. Among the evaluated rootstocks statistically significant differ-ences in total length of the fine roots were not found. Between different rootstocks the results for total length of coarse roots showed more variability. In general, even 89% of the total length of root system belonged to fine roots, and the highest percentage (35%) was located at depths of 20 to 40 cm. Trees grafted on Mark 9 rootstock had the highest value for total root length, while the smallest values were registered on those grafted on Pajam 1 rootstock. Trees grafted on Supporter 4 rootstock had the greatest weight of the root system, while the smallest one was found on rootstock Budagowski 9.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aung Zaw Oo ◽  
Yasuhiro Tsujimoto ◽  
Mana Mukai ◽  
Tomohiro Nishigaki ◽  
Toshiyuki Takai ◽  
...  

AbstractImproved phosphorus (P) use efficiency for crop production is needed, given the depletion of phosphorus ore deposits, and increasing ecological concerns about its excessive use. Root system architecture (RSA) is important in efficiently capturing immobile P in soils, while agronomically, localized P application near the roots is a potential approach to address this issue. However, the interaction between genetic traits of RSA and localized P application has been little understood. Near-isogenic lines (NILs) and their parent of rice (qsor1-NIL, Dro1-NIL, and IR64, with shallow, deep, and intermediate root growth angles (RGA), respectively) were grown in flooded pots after placing P near the roots at transplanting (P-dipping). The experiment identified that the P-dipping created an available P hotspot at the plant base of the soil surface layer where the qsor1-NIL had the greatest root biomass and root surface area despite no genotyipic differences in total values, whereby the qsor1-NIL had significantly greater biomass and P uptake than the other genotypes in the P-dipping. The superior surface root development of qsor1-NIL could have facilitated P uptakes from the P hotspot, implying that P-use efficiency in crop production can be further increased by combining genetic traits of RSA and localized P application.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lei Feng ◽  
Wanli Xu ◽  
Guangmu Tang ◽  
Meiying Gu ◽  
Zengchao Geng

Abstract Background Raising nitrogen use efficiency of crops by improving root system architecture is highly essential not only to reduce costs of agricultural production but also to mitigate climate change. The physiological mechanisms of how biochar affects nitrogen assimilation by crop seedlings have not been well elucidated. Results Here, we report changes in root system architecture, activities of the key enzymes involved in nitrogen assimilation, and cytokinin (CTK) at the seedling stage of cotton with reduced urea usage and biochar application at different soil layers (0–10 cm and 10–20 cm). Active root absorption area, fresh weight, and nitrogen agronomic efficiency increased significantly when urea usage was reduced by 25% and biochar was applied in the surface soil layer. Glutamine oxoglutarate amino transferase (GOGAT) activity was closely related to the application depth of urea/biochar, and it increased when urea/biochar was applied in the 0–10 cm layer. Glutamic-pyruvic transaminase activity (GPT) increased significantly as well. Nitrate reductase (NR) activity was stimulated by CTK in the very fine roots but inhibited in the fine roots. In addition, AMT1;1, gdh3, and gdh2 were significantly up-regulated in the very fine roots when urea usage was reduced by 25% and biochar was applied. Conclusion Nitrogen assimilation efficiency was significantly affected when urea usage was reduced by 25% and biochar was applied in the surface soil layer at the seedling stage of cotton. The co-expression of gdh3 and gdh2 in the fine roots increased nitrogen agronomic efficiency. The synergistic expression of the ammonium transporter gene and gdh3 suggests that biochar may be beneficial to amino acid metabolism.


Forests ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 32
Author(s):  
Valters Samariks ◽  
Dace Brizga ◽  
Jeļena Rūba ◽  
Andris Seipulis ◽  
Āris Jansons

Climate change will cause winds to strengthen and storms to become more frequent in Northern Europe. Windstorms reduce the financial value of forests by bending, breaking, or uprooting trees, and wind-thrown trees cause additional economic losses. The resistance of trees to wind damage depends on tree species, tree- and stand-scale parameters, and root-soil plate characteristics such as root-plate size, weight, and rooting depth. The root-soil plate is a complex structure whose mechanical strength is dependent on root-plate width and depth, as the root system provides root attachment with soil and structural support. In Latvia, the common aspen (Populus tremula L.) root system has been studied to develop a belowground biomass model, because information about root system characteristics in relation to tree wind resistance is scarce. The aim of this study was to assess the root-plate dimensions of common aspen stands on fertile mineral soil (luvisol). Study material was collected in the central region of Latvia, where pure mature (41–60 years old) common aspen stands were randomly selected, and dominant trees within the stand were chosen. In total, ten sample trees from ten stands were uprooted. The diameter at breast height (DBH) and tree height (H) were measured for each sample tree, and their roots were excavated, divided into groups, washed, measured, and weighed. The highest naturally moist biomass values were observed for coarse roots, and fine root biomass was significantly lower compared to other root groups. All root group biomass values had a strong correlation with the tree DBH. The obtained results show that there is a close, negative relationship between the relative distance from the stem and the relative root-plate depth distribution.


2018 ◽  
Vol 41 (4) ◽  
Author(s):  
Rômulo André Beltrame ◽  
José Carlos Lopes ◽  
Julião Soares de Souza Lima ◽  
Vagner Mauri Quinto

ABSTRACT The objective of this study was to analyze the spatial distribution of the attributes that determine the physiological quality of Joannesia princeps seeds. Seeds were collected, individually from, 40 mother plants in the Horto Florestal Municipal Laerth Paiva Gama, in Alegre-ES, which constituted the georeferenced sampling mesh. For germination, the seeds tegument was cracked and was held the imbibition in gibberellic acid GA3 500 mg L-1 for 24 h in environmental chamber with temperature adjusted to 30 ºC. The seeds were sown in plastic bags of ± 600 cm3 containing soil+sand+manure in the proportion of 1:1:1. On the 65th day after sowing, the following variables were analised: emergence (E), emergence speed index (IVE), root length (CR), diameter of base (DC), shoot length of the aerial part (CPA), fresh mass of the root system (MFSR), fresh mass of the aerial part (MFPA), dry mass of the root system (MSSR) and dry mass of the aerial part (MSPA). Data were subjected to descriptive statistics, geostatistics and kriging. With the exception of CPA and MFSR, it was found spatial dependence for the other studied variables: E, IVE, CR, DC, MFPA, MSSR e MSPA; varying of 14,0 a 47,5 m, so that the lowest range for the CR and longer range and degree of spatial dependence for the IVE. The analysis of the spatial distribution of the physiological quality of seeds of J. princeps can be used as a tool to define the sampling region of seeds with high and low vigor.


Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 181 ◽  
Author(s):  
Antonio Montagnoli ◽  
Bruno Lasserre ◽  
Gabriella Sferra ◽  
Donato Chiatante ◽  
Gabriella Stefania Scippa ◽  
...  

The coarse roots of Pinus ponderosa included in the cage are the ones most involved in tree stability. This study explored the variations in traits, such as volume, cross-sectional area, and radius length of cage roots, and used those data to develop a mathematical model to better understand the type of forces occurring for each shallow lateral root segment belonging to different quadrants of the three-dimensional (3D) root system architecture. The pattern and intensity of these forces were modelled along the root segment from the branching point to the cage edge. Data of root cage volume in the upper 30 cm of soil showed a higher value in the downslope and windward quadrant while, at a deeper soil depth (>30 cm), we found higher values in both upslope and leeward quadrants. The analysis of radius length and the cross-sectional area of the shallow lateral roots revealed the presence of a considerable degree of eccentricity of the annual rings at the branching point and at the cage edge. This eccentricity is due to the formation of compression wood, and the eccentricity changes from the top portion at the branching point to the bottom portion at the cage edge, which we hypothesize may be a response to the variation in mechanical forces occurring in the various zones of the cage. This hypothesis is supported by a mathematical model that shows how the pattern and intensity of different types of mechanical forces are present within the various quadrants of the same root system from the taproot to the cage edge.


Forests ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1227
Author(s):  
Moein Farahnak ◽  
Keiji Mitsuyasu ◽  
Takuo Hishi ◽  
Ayumi Katayama ◽  
Masaaki Chiwa ◽  
...  

Tree root system development alters forest soil properties, and differences in root diameter frequency and root length per soil volume reflect differences in root system function. In this study, the relationship between vertical distribution of very fine root and soil water content was investigated in intact tree and cut tree areas. The vertical distribution of root density with different diameter classes (very fine <0.5 mm and fine 0.5–2.0 mm) and soil water content were examined along a slope with two coniferous tree species, Cryptomeria japonica (L.f.) D. Don and Chamaecyparis obtusa (Siebold et Zucc.) Endl. The root biomass and length density of very fine roots at soil depth of 0–5 cm were higher in the Ch. obtusa intact tree plot than in the Cr. japonica intact plot. Tree cutting caused a reduction in the biomass and length of very fine roots at 0–5 cm soil depth, and an increment in soil water content at 5–30 cm soil depth of the Ch. obtusa cut tree plot one year after cutting. However, very fine root density of the Cr. japonica intact tree plot was quite low and the soil water content in post-harvest areas did not change. The increase in soil water content at 5–30 cm soil depth of the Ch. obtusa cut tree plot could be caused by the decrease in very fine roots at 0–5 cm soil depth. These results suggest that the distribution of soil water content was changed after tree cutting of Ch. obtusa by the channels generated by the decay of very fine roots. It was also shown that differences in root system characteristics among different tree species affect soil water properties after cutting.


Sign in / Sign up

Export Citation Format

Share Document