scholarly journals The invasive amphipod Gammarus tigrinus Sexton, 1939 conquering the north of Europe using a new pathway: the first recordings from Norway

2020 ◽  
Vol 40 ◽  
pp. 130-136
Author(s):  
Ingvar Spikkeland ◽  
Jørn Bøhmer Olsen ◽  
Ragnar Kasbo ◽  
Kjell Magne Olsen ◽  
Jens Petter Nilssen

The invasive amphipod Gammarus tigrinus has during the last decades spread to large parts of Northern Europe, mainly using pathways eastwards from The British Isles to Continental Europe and further northeast into the Baltic Sea. From the coastline it has to some extent spread further inland, especially in topographically low-relief landscapes with highly polluted rivers. This account reports another geographical direction of dispersal, towards north into Southern Norway. In coastal brackish-water regions G. tigrinus may displace other gammarids. Large parts of Norway consist of high-relief landscapes close to many estuaries, so the further spread into this country is doubtful. However, if the taxon can avoid the initial barriers using vectors and spread into new watercourses above such barriers and thrive in this new ambient water chemistry, it may have large negative influence on the other benthic fauna. But Norwegian lakes and rivers are most probably too electrolyte-poor to support this species. However, in estuaries and other brackish waters along the coast, at least in the southern part of Norway, the species will thrive. Gammarus tigrinus is the only known intermediate host for the native American acanthocephalan parasite Paratenuisentis ambiguus, which has the American eel as its main host. This parasite also infects the European eel, and this poses an additional threat to the already endangered eel in Norwegian rivers where G. tigrinus has been recorded.

2013 ◽  
Vol 8 (3) ◽  
pp. 319-332 ◽  
Author(s):  
Jonne Kotta ◽  
Merli Pärnoja ◽  
Tarja Katajisto ◽  
Maiju Lehtiniemi ◽  
Stanislaw Malavin ◽  
...  

2003 ◽  
pp. 136-146
Author(s):  
K. Liuhto

Statistical data on reserves, production and exports of Russian oil are provided in the article. The author pays special attention to the expansion of opportunities of sea oil transportation by construction of new oil terminals in the North-West of the country and first of all the largest terminal in Murmansk. In his opinion, one of the main problems in this sphere is prevention of ecological accidents in the process of oil transportation through the Baltic sea ports.


Author(s):  
Angelina E. Shatalova ◽  
Uriy A. Kublitsky ◽  
Dmitry A. Subetto ◽  
Anna V. Ludikova ◽  
Alar Rosentau ◽  
...  

The study of paleogeography of lakes is an actual and important direction in modern science. As part of the study of lakes in the North-West of the Karelian Isthmus, this analysis will establish the dynamics of salinity of objects, which will allow to reconstruct changes in the level of the Baltic Sea in the Holocene.


2013 ◽  
Vol 39 (1) ◽  
pp. 103-103
Author(s):  
Anna Roos

Author(s):  
Vera Rostovtseva ◽  
Vera Rostovtseva ◽  
Igor Goncharenko ◽  
Igor Goncharenko ◽  
Dmitrii Khlebnikov ◽  
...  

Sea radiance coefficient, defined as the ratio of the sunlight reflected by the water bulk to the sunlight illuminating the water surface, is one of the most informative optical characteristics of the seawater that can be obtained by passive remote sensing. We got the sea radiance coefficient spectra by processing the data obtained in measurements from board a moving ship. Using sea radiance coefficient optical spectra it is possible to estimate water constituents concentration and their distribution over the aquatory of interest. However, thus obtained sea radiance coefficient spectra are strongly affected by weather and measurement conditions and needs some calibration. It was shown that practically all the spectra of sea radiance coefficient have some generic peculiarities regardless of the type of sea waters. These peculiarities can be explained by the spectrum of pure sea water absorption. Taking this into account a new calibration method was developed. The measurements were carried out with the portative spectroradiometers from board a ship in the five different seas: at the north-east coast of the Black Sea, in the Gdansk Bay of the Baltic Sea, in the west part of the Aral Sea, in the Kara Sea with the Ob’ Bay and in the Philippine Sea at the coast of Taiwan. The new method of calibration was applied to the obtained spectra of the sea radiance coefficient that enabled us to get the corresponding absorption spectra and estimate the water constituents concentration in every region. The obtained concentration estimates were compared to the values obtained in water samples taken during the same measurement cycle and available data from other investigations. The revealed peculiarities of the sea radiance coefficient spectra in the aquatories under exploration were compared to the corresponding water content and some characteristic features were discussed.


1995 ◽  
Vol 31 (10) ◽  
pp. 61-71 ◽  
Author(s):  
M. Enell

During the last 20 years there has been an interesting development of the Nordic fish farming, with regard to the feeding and farming technology and to the increase in production quantities. During the period 1974-1994 the production increased from 15,800 to about 250,000 tonnes/year. In 1974 the major part of the production was in Denmark, and in 1994 the major part was in Norway. The nutrient impact of fish farming on surrounding sea areas is mainly a function of the feed coefficient, the feed composition and metabolic processes in the fish. The comprehensive development of the feed composition and the feeding technology has resulted in reduced load of unmetabolized nutrients from fish farms, calculated per tonne fish produced. In 1974 the mean Nordic feed coefficient was 2.08 and in 1994 the coefficient was 1.25. Feed coefficients of 1.0-1.1 are now reported for Danish and Norwegian freshwater and marine fish farms. The nitrogen (N) and phosphorus (P) content of the feed has decreased, in addition the quality of the nutrient substances in the feed has changed, especially for N. The N content has decreased from 7.8 to 6.8% during the period 1974-1994 and the content of P has decreased from 1.7 to 0.7% during the same period. This development of the feed coefficient and the feed composition has resulted in a present load from a typical Nordic fish farm of 55 kg N and 4.8 kg P/t fish produced. The figures for 1974 were 132 kg N and 31 kg P/t fish produced. The Nordic fish farming production in 1994 resulted in a load of about 13,750 t N and about 1,200 t P on the actual recipients. The load from the Swedish, Finnish and Danish fish farming operations, with the Baltic Sea and the Skagerrak as the recipients, is negligible in comparison with other pollution sources. The quantities of N and P from the fish farming are equal to 0.5% of the atmospheric deposition on the sea surface and 3% of the atmospheric P load. Norwegian, Icelandic and the Faroe Islands fish farming operations are using the North Sea and the Norwegian Sea as the recipients. However, the nutrient load from single fish farms in certain coastal and inland water bodies can be significant and must be considered in the impact assessment together with other sources.


2020 ◽  
Vol 224 (3) ◽  
pp. 1684-1704
Author(s):  
Alexandra Mauerberger ◽  
Valérie Maupin ◽  
Ólafur Gudmundsson ◽  
Frederik Tilmann

SUMMARY We use the recently deployed ScanArray network of broad-band stations covering most of Norway and Sweden as well as parts of Finland to analyse the propagation of Rayleigh waves in Scandinavia. Applying an array beamforming technique to teleseismic records from ScanArray and permanent stations in the study region, in total 159 stations with a typical station distance of about 70 km, we obtain phase velocities for three subregions, which collectively cover most of Scandinavia (excluding southern Norway). The average phase dispersion curves are similar for all three subregions. They resemble the dispersion previously observed for the South Baltic craton and are about 1 per cent slower than the North Baltic shield phase velocities for periods between 40 and 80 s. However, a remarkable sin(1θ) phase velocity variation with azimuth is observed for periods >35 s with a 5 per cent deviation between the maximum and minimum velocities, more than the overall lateral variation in average velocity. Such a variation, which is incompatible with seismic anisotropy, occurs in northern Scandinavia and southern Norway/Sweden but not in the central study area. The maximum and minimum velocities were measured for backazimuths of 120° and 300°, respectively. These directions are perpendicular to a step in the lithosphere–asthenosphere boundary (LAB) inferred by previous studies in southern Norway/Sweden, suggesting a relation to large lithospheric heterogeneity. In order to test this hypothesis, we carried out 2-D full-waveform modeling of Rayleigh wave propagation in synthetic models which incorporate a steep gradient in the LAB in combination with a pronounced reduction in the shear velocity below the LAB. This setup reproduces the observations qualitatively, and results in higher phase velocities for propagation in the direction of shallowing LAB, and lower ones for propagation in the direction of deepening LAB, probably due to the interference of forward scattered and reflected surface wave energy with the fundamental mode. Therefore, the reduction in lithospheric thickness towards southern Norway in the south, and towards the Atlantic ocean in the north provide a plausible explanation for the observed azimuthal variations.


2017 ◽  
Vol 75 (2) ◽  
pp. 727-737 ◽  
Author(s):  
Sarah Walmsley ◽  
Julie Bremner ◽  
Alan Walker ◽  
Jon Barry ◽  
David Maxwell

Abstract European eel Anguilla anguilla recruitment into the rivers of the northeastern Atlantic has declined substantially since the 1980s. Monitoring of recruiting juveniles, or glass eels, is usually undertaken in small estuaries and rivers. Sampling of large-scale estuaries is rare, due to the size of the sampling area and the resources needed to provide adequate sampling levels. Here we describe surveys for glass eels in the UK’s largest estuarine system, the Severn Estuary/Bristol Channel. We sampled across a 20 km-wide stretch of the estuary in 2012 and 2013, using a small-meshed net deployed from a commercial fishing trawler, and the surveys yielded over 2500 glass eels. Eels were more abundant in the surface layer (0–1.4 m depth) than at depth (down to 8.4 m depth), were more abundant close to the south shore than along the north shore or middle of the estuary, and were more abundant in lower salinity water. Numbers were higher in the second year than in the first and eels were more abundant in February than April. The difficulties and logistics of sampling in such a large estuary are discussed, along with the level of resources required to provide robust estimates of glass eel abundance.


1971 ◽  
Vol 24 (4) ◽  
pp. 553-556
Author(s):  
D. J. Lindsay

By the North European Trade Axis is meant the trade route from Ushant and Land's End, up the English Channel, through the Dover Strait fanning out to serve eastern England, the north coast of continental Europe and leading to the Baltic Basin. Recent events in this area have left a feeling that some form of tightening of control is not only desirable, but is rapidly becoming imperative. There is a basic conflict between the two forms of shipping using the area: the local users who use the area more or less constantly, and the long-distance traders, usually much larger, which arrive in the area for a brief stay after a prolonged period at sea, which has usually been in good weather conditions. Frequently these latter ships have a very poor notion of the hornet's nest into which they are steaming when they arrive. The net result is all too often the same: the local users, with familiarity breeding contempt, wander about as they see fit, with scant regard for routing or the regulations; all too often the big ships arrive from sea with navigating staffs who are too confused, sometimes too ignorant—and sometimes too terrified—to do much more than blunder forward in a straight line hoping for the best. Quite obviously this is not a total picture, and there are large numbers of ships which navigate perfectly competently, but the minority of those which do not seem to be rising rapidly, and show every sign of continuing to increase.


Sign in / Sign up

Export Citation Format

Share Document