scholarly journals Effects of opening location on flexural behavior of RC columns with sidewalls

Author(s):  
Daisuke Kato ◽  
Daisuke Sato ◽  
Tadashi Takamatsu

Practical use of secondary walls such as sidewalls is common because the contributions of secondary walls for stiffness or strength have been recognized. In 2016, “AIJ Standard for Lateral Load-carrying Capacity Calculation of Reinforced Concrete Structures” was published as a draft by Architectural Institute of Japan. In this standard new equations for columns with side walls were proposed. From this viewpoint, the authors have conducted static loading tests of flexurally controlled RC column specimens with single opening in the sidewall, to investigate the effects of openings on strength and deformation capacity of RC columns with a side walls. In this paper, the limitations on location of openings inside sidewalls to avoid their effects on flexural strength and deformation capacity are examined using design equations for flexural strength based on full plastic moment of the column and sidewall. The test results indicate that the proposed limitation line on location of openings to avoid their effects for flexure could be effective for practical design.

2007 ◽  
Vol 348-349 ◽  
pp. 437-440
Author(s):  
Han Seung Lee ◽  
Sang Heon Shin ◽  
Je Woon Kyung

RC beam with corroded tension rebars were strengthened with carbon fiber sheets(CFS) and were subjected to static loading tests to investigate the flexural strengthening effect of CFS. The test results confirmed that CFS are effective in reducing stresses to be carried by tension rebars and increasing flexural strength. Since the deformation capacity of the strengthened specimens was increased by anchoring the CFS and since the maximum strength of the specimens was determined by detachment or rupture of CFS, the flexural strength of the strengthened specimens could be calculated from an existing formula. Experimentally determined load-deflection relationships for RC beams were reproduced accurately through a FEM analysis modeling the bond elements between the concrete and the CFS. Practical application of the CFS sheeting method to RC beams requires improvement of the strength of bond between CFS and concrete.


2015 ◽  
Vol 1095 ◽  
pp. 229-232
Author(s):  
Xu Jun Chen ◽  
Xiao E Zhu ◽  
Chao Hong Gao

Many studies have focused on the flexural behavior of conventional reinforced concrete (RC) beams strengthened with fiber reinforced polymer (FRP) bonded on the bottom surface; however, rare attempt is made to strengthen RC beams with FRP bonded on the side surface, furthermore, as for the comparative study of the both is even more scarce.Based on the existing bending experimental data of RC beams externally strengthened with FRP, the flexural capacity calculation formula of normal section of RC beams strengthened with FRP bonded on the side or bottom surface was deduced in the paper. In addition, a comparative analysis on the strengthening effect between bottom bonded FRP and side bonded FRP was made. The results indicated that the ultimate load-carrying capacity of the former was slightly lower than the later.


2013 ◽  
Vol 319 ◽  
pp. 440-443
Author(s):  
Seung Hun Kim ◽  
Yong Taeg Lee ◽  
Tae Soo Kim ◽  
Seong Uk Hong

This study evaluates the flexural performance of reinforced concrete beams with GFRP(Glass Fiber Reinforced Polymer) bars and RCA(Recycled Coarse Aggregates). A total of four specimens with various replacement ratios of RCA (0%, 30%, 50%, and 100%) were tested. An investigation was performed on the influence of RCA with various replacement ratios on load-carrying capacity, post cracking stiffness, cracking pattern, and ductility. The test results showed that replacement ratios of RCA had not a bad effect on concrete compressive strength or flexural strength of beams. They were compared with the design flexural strength and the nominal moment predictions of ACI Code.


2021 ◽  
Vol 16 ◽  
pp. 155892502110203
Author(s):  
Mohammad Iqbal Khan ◽  
Galal Fares ◽  
Yassir Mohammed Abbas ◽  
Wasim Abbass ◽  
Sardar Umer Sial

Strain-hardening cement-based composites (SHCC) have recently been developed as repair materials for the improvement of crack control and strength of flexural members. This work focuses on strengthening and flexural enhancement using SHCC layer in tensile regions of flexural members under three different curing conditions. The curing conditions simulate the effect of different environmental conditions prevailing in the central and coastal regions of the Arabian Peninsula on the properties of SHCC as a retrofitting material. In this investigation, beams with SHCC layer were compared to control beams. The beams with SHCC layer of 50-mm thickness were cast. The results revealed that the flexural behavior and the load-carrying capacity of the normal concrete beam specimens under hot and dry environmental conditions were significantly reduced, lowering the ductility of the section. However, compressive strength is comparatively unaffected. Similarly, the hot curing conditions have also led to a notable reduction in the loading capacity of the beam with SHCC layer with a slight effect on its stiffness. On the other hand, steam-curing conditions have shown improvement in load-carrying capacity and a reduction in section ductility of the beam with SHCC layer. It was found that the structural unit retrofitted with SHCC layer was a curing-regime dependent as the tensile and strain-hardening properties of SHCC are highly sensitive to the alteration in the cement hydration process. A normal curing regime was found effective and satisfying the practical, cost, and performance requirements. Accordingly, a normal curing regime could be implemented to retrofit reinforced concrete (RC) beams with SHCC layers as recommended in the study.


2021 ◽  
pp. 152808372110003
Author(s):  
M Atta ◽  
A Abu-Sinna ◽  
S Mousa ◽  
HEM Sallam ◽  
AA Abd-Elhady

The bending test is one of the most important tests that demonstrates the advantages of functional gradient (FGM) materials, thanks to the stress gradient across the specimen depth. In this research, the flexural response of functionally graded polymeric composite material (FGM) is investigated both experimentally and numerically. Fabricated by a hand lay-up manufacturing technique, the unidirectional glass fiber reinforced epoxy composite composed of ten layers is used in the present investigation. A 3-D finite element simulation is used to predict the flexural strength based on Hashin’s failure criterion. To produce ten layers of FGM beams with different patterns, the fiber volume fraction ( Vf%) ranges from 10% to 50%. A comparison between FGM beams and conventional composite beams having the same average Vf% is made. The experimental results show that the failure of the FGM beams under three points bending loading (3PB) test is initiated from the tensioned layers, and spread to the upper layer. The spreading is followed by delamination accompanied by shear failures. Finally, the FGM beams fail due to crushing in the compression zone. Furthermore, the delamination failure between the layers has a major effect on the rapidity of the final failure of the FGM beams. The present numerical results show that the gradient pattern of FGM beams is a critical parameter for improving their flexural behavior. Otherwise, Vf% of the outer layers of the FGM beams, i.e. Vf% = 30, 40, or 50%, is responsible for improving their flexural strength.


2013 ◽  
Vol 671-674 ◽  
pp. 1319-1323
Author(s):  
Zi Xue Lei ◽  
Yu Hang Han ◽  
San Sheng Dong ◽  
Jun Qing Guo

A centrally reinforced column is a new type of RC columns, formed by providing a reinforcement skeleton at the central part of the cross section of an ordinary RC column. Tests have shown that as compared with an ordinary RC column, this type of columns has a higher load carrying capacity and ductility. From the pushover analysis of a frame composed of ordinary RC columns and one consisting of centrally reinforced columns, their seismic performance under seismic load of 9-degree intensity was studied according to Chinese code, including target displacements, story-level displacements, interstory drifts, appearance and development of plastic hinges. The results indicate that although the dimensions of cross sections of columns in the frame with centrally reinforced columns are smaller than those of the ordinary frame, the former still has a higher overall load carrying capacity and seismic performance than the latter.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 751
Author(s):  
Chi Hiep Le ◽  
Petr Louda ◽  
Katarzyna Ewa Buczkowska ◽  
Iva Dufkova

This paper presents an experimental research on the mechanical properties of the hybrid composite thin-plates of the short basalt fibers (CBFs)/carbon textile-reinforced geomortar. The effect of fiber contents and lengths of CBFs on the flexural behavior of carbon textile-reinforced geopolymer specimens (TRGs) was investigated by the four-point flexural strength and Charpy impact test. The experimental results of hybrid TRGs, on the one hand, were compared with reference TRGs, without CBF addition; on the other hand, they were compared with the results of our previous publication. According to the mixing manner applied, fresh geomortar indicated a marked reduction in workability, increasing the CBF loading. Furthermore, using CBFs with lengths of 12 mm and 24 mm makes it easy to form the fiber clusters in geomortar during mixing. According to all the CBF loadings used, it was found that TRGs showed a significant improvement in both static and dynamic flexural strength. However, the failure mode of these TRGs is similar to that of the reference TRGs, described by the process of fiber debonding or simultaneously fiber debonding and collapse. In comparison with our prior work results, neither the CBF dose levels nor the fiber lengths used in this work have yielded a positive effect on the failure manner of TRGs. According to the results of the Charpy impact test, this reveals that the anchoring capacity of textile layers in geomortar plays an important role in specimens’ strength.


2010 ◽  
Vol 163-167 ◽  
pp. 1510-1514 ◽  
Author(s):  
Rui Pang ◽  
Shu Ting Liang ◽  
Xiao Jun Zhu ◽  
Yao Meng

Detailed formation of precast floor slab connectors has significant effect on their shear capacity, but there is no such specific provision on it at present. The effects of detailed formations on the shear strength, stiffness and deformation capacity of hairpin connectors(HPC) were studied, through numerical simulation analysis under in-plane shear force. The imbedded depth (d), slug length (h), steel plate thickness (t) and its stickout(s) were taken as parameters. The analysis results show that: ⅰ) the increase of imbedded depth can improve the bearing capacity and stiffness of HPC, but decrease the deformation capacity; ⅱ) with the increase of slug length, the HPC strength, stiffness and deformation capacity raised a lot; ⅲ) the steel plates’ thickness has small effect on the stiffness, but has strong impact on the strength and deformation capacity of HPC. ⅳ) the stickout can affect the initial stiffness and yield strength of HPC slightly, but has a considerable impact on its ultimate strength and deformation capacity. On the basis of analysis, recommendations on formation details of HPC are proposed for design and construction.


Author(s):  
Yong Wang ◽  
Huanjun Jiang ◽  
Chen Wu ◽  
Zihui Xu ◽  
Zhiyuan Qin

<p>Suspended ceiling systems (SCSs) experienced severe damage during strong earthquakes that occurred in recent years. The capacity of the ceiling component is a crucial factor affecting the seismic performance of SCS. Therefore, a series of static tests on suspended ceiling components under monotonic and cyclic loadings were carried out to investigate the seismic performance of the ceiling components. The ceiling components include main tee splices, cross tee latches and peripheral attachments. All specimens were tested under axial loading. Additionally, the static tests of cross tee latches subjected to shear and bending loadings were performed due to their seismic vulnerability. The failure pattern, load-carrying ability, deformation capacity and energy dissipation of the ceiling components are presented in detail in this study.</p>


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Suresh Kumar Arunachalam ◽  
Muthukannan Muthiah ◽  
Kanniga Devi Rangaswamy ◽  
Arunkumar Kadarkarai ◽  
Chithambar Ganesh Arunasankar

Purpose Demand for Geopolymer concrete (GPC) has increased recently because of its many benefits, including being environmentally sustainable, extremely tolerant to high temperature and chemical attacks in more dangerous environments. Like standard concrete, GPC also has low tensile strength and deformation capacity. This paper aims to analyse the utilization of incinerated bio-medical waste ash (IBWA) combined with ground granulated blast furnace slag (GGBS) in reinforced GPC beams and columns. Medical waste was produced in the health-care industry, specifically in hospitals and diagnostic laboratories. GGBS is a form of industrial waste generated by steel factories. The best option to address global warming is to reduce the consumption of Portland cement production and promote other types of cement that were not a pollutant to the environment. Therefore, the replacement in ordinary Portland cement construction with GPC is a promising way of reducing carbon dioxide emissions. GPC was produced due to an alkali-activated polymeric reaction between alumina-silicate source materials and unreacted aggregates and other materials. Industrial pollutants such as fly ash and slag were used as raw materials. Design/methodology/approach Laboratory experiments were performed on three different proportions (reinforced cement concrete [RCC], 100% GGBS as an aluminosilicate source material in reinforced geopolymer concrete [GRGPC] and 30% replacement of IBWA as an aluminosilicate source material for GGBS in reinforced geopolymer concrete [IGRGPC]). The cubes and cylinders for these proportions were tested to find their compressive strength and split tensile strength. In addition, beams (deflection factor, ductility factor, flexural strength, degradation of stiffness and toughness index) and columns (load-carrying ability, stress-strain behaviour and load-deflection behaviours) of reinforced geopolymer concrete (RGPC) were studied. Findings As shown by the results, compared to Reinforced Cement Concrete (RCC) and 100% GGBS based Reinforced Geopolymer Concrete (GRGPC), 30% IBWA and 70% GGBS based Reinforced Geopolymer Concrete (IGRGPC) (30% IBWA–70% GGBS reinforced geo-polymer concrete) cubes, cylinders, beams and columns exhibit high compressive strength, tensile strength, flexural strength, load-carrying ability, ultimate strength, stiffness, ductility and deformation capacity. Originality/value All the results were based on the experiments done in this research. All the result values obtained in this research are higher than the theoretical values.


Sign in / Sign up

Export Citation Format

Share Document