scholarly journals Biodiversity of Natural Enemies of Pseudococcidae in the Semiarid Region of Brazil

2020 ◽  
Vol 12 (7) ◽  
pp. 24
Author(s):  
Maria G. R. Sá ◽  
José E. M. Oliveira ◽  
Valmir A. Costa ◽  
Paulo R. C. Lopes

Pseudococcidae species, also known as mealybugs, comprises a complex of pests in various cultivated and non-cultivated plant species, among which fruit plants are most affected by both direct and indirect damage. The incidence of these pest species has been constant in productive environments, causing significant losses due to sap suction, virus transmission, and damage to fruit quality. Thus, this study aimed to know and investigate the population dynamics of natural enemies of Pseudococcidae in different fruit plants cultivated in the semiarid region of Brazil. For this, mealybugs associated with roots, stems, leaves, and fruits of vine, pear, apple, persimmon, guava, and acerola trees were collected biweekly in 14 properties in the São Francisco Valley region, from July 2016 to June 2017. These mealybugs were properly separated for the removal of their predators and the emergence of parasitoids associated with them (Pseudococcidae). Coccophagus sp., Aenasius sp., Anagyrus kamali, Anagyrus sp. 1, Anagyrus sp. 2, Anagyrus sp. 3, Anagyrus sp. 4, Coccidoxenoides perminutus, Gyranusoidea indica, Leptomastix dactylopii, Prochiloneurus sp., Aprostocetus sp., and Signiphora sp. were identified as parasitoids and Diadiplosis multifila, Cryptolaemus montrouzieri, Tenuisvalvae notata, Cycloneda sanguinea, and Hippodamia convergens were identified as predators, in addition to unidentified species of Coccinellidae and Chrysopidae.

HortScience ◽  
2013 ◽  
Vol 48 (12) ◽  
pp. 1513-1517 ◽  
Author(s):  
Brian K. Hogendorp ◽  
Raymond A. Cloyd

Both laboratory and greenhouse experiments were conducted to determine if the fungicide, MilStop® (BioWorks, Victor, NY), which contains the active ingredient, potassium bicarbonate, has direct activity on the citrus mealybug, Planococcus citri Risso. Spray applications of four different rates (4.5, 5.9, 7.4, and 14.9 g·L–1) were applied to green coleus, Solenostemon scutellarioides (L.) Codd., plants infested with citrus mealybugs. In addition, experiments were conducted to assess both the direct and indirect effects of MilStop® on two natural enemies of the citrus mealybug: the parasitoid, Leptomastix dactylopii (Howard), and the coccinellid beetle, Cryptolaemus montrouzieri (Mulsant). MilStop® provided between 56% and 86% mortality of citrus mealybug; however, the highest rate (14.9 g·L–1) was phytotoxic to coleus plants. Percent mortality associated with the second highest rate (7.4 g·L–1) was 82%, which was comparable to acetamiprid (84%) applied at 0.05 g·L–1. For the natural enemies, MilStop® treatment rates of 1.5 and 3.5 g·L–1 resulted in 16% mortality, whereas the 5.5- and 9.0-g·L–1 rates resulted in 33% mortality of L. dactylopii adults. MilStop® treatment rates of 3.5, 5.5, 9.0, and 12.0 g·L–1 resulted in 30%, 60%, 40%, and 90% mortality, respectively, of C. montrouzieri adults. Therefore, depending on the application rate, this fungicide may inadvertently kill citrus mealybugs when used to control fungal plant pathogens. It should not disrupt biological control programs targeting citrus mealybug in greenhouses that involve releases of L. dactylopii when used at low application rates, whereas MilStop® applications should be properly timed when using C. montrouzieri.


2019 ◽  
Vol 29 (1) ◽  
Author(s):  
Hosam M. K. H. El-Gepaly

AbstractSorghum panicles offer a very rich microenvironment for many insect pest species and their natural enemies. Thirty arthropod species belonging to 28 families, pertaining to 9 orders were obtained from sorghum panicles planted in Sohag Governorate, Egypt, during the 3 successive seasons of 2016–2018. Out of these species were 14 pests, 16 predators, and 3 parasitoids. Lepidopteran and hemipteran pests were the most dominant species-infested sorghum-panicles during the mature stages of the panicles. Three microlepidopteran pests, the noctuid, Eublemma (Autoba) gayneri (Roth.); the pyralid, Cryptoblabes gnidiella Millière, and the cosmopterigid, Pyroderces simplex Walsingham, were recorded as major pest species infesting sorghum panicles in Sohag Governorate. The dipteran parasitoid species, Nemorilla floralis (Fallen) (Tachinidae) emerged from the pupae of the E. gayneri and C. gnidiella, while the hymenopteran parasitoid, Brachymeria aegyptiaca (Chalcididae) was obtained from the pupae of all the studied microlepidopteran pests. Spiders, coccinellids, and Orius spp. were the dominant predators collected form panicles. Post-harvest, larvae, and pupae of lepidopteran pests, especially P. simplex recorded (147, 96, and 79 larvae) and (47, 30, and 73 pupae)/10 panicles in 2016, 2017, and 2018 seasons, respectively.


1935 ◽  
Vol 13d (2) ◽  
pp. 19-39 ◽  
Author(s):  
F. C. Gilliatt

Predators are the most important natural enemies of the European red mite. Notes are given on the life history and habits of the following predaceous enemies of this mite, Seiulus pomi Parrott; Diaphnidia pellucida Uhl.; Diaphnidia capitata Van D.; Hyaliodes vitripennis Say; Stethorus punctum Leconte; Plagiognathus obscurus Uhl.; Camptobrochis nebulosus Uhl.; Anystis agilis Banks; Campylomma verbasci Mey., and an unidentified species of Syrphidae.


Insects ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 239
Author(s):  
Davide Scaccini ◽  
Enrico Ruzzier ◽  
Kent M. Daane

Grape cultivation is a billion-dollar agricultural sector in California, where invasive or novel pest species can disrupt management practices. We report herein on a new pest associated with California vineyards, the carpentermoth Givira ethela (Neumoegen and Dyar, 1893). Rather than an invasive species, G. ethela appears to be a newly recognized wood-boring pest of Vitis vinifera (L.) in regions of California’s Central Valley, where its initial occurrence has been dated back to, at least, the beginning of the 2000s. The habitus of adult, genitalia and pupa is illustrated. Givira ethela distribution in California is updated including published records and new data. Carpentermoth galleries seem to facilitate the access of Planococcus ficus Signoret, 1875 to vine sap and protection from natural enemies, environmental stresses, and pesticide treatments. Notes on pest status, life history, monitoring practices, natural enemies, and management options on grapes are also discussed. Tools for the Integrated Pest Management of G. ethela should include the correct identification of the insect and its damage, a full understanding of its biology and ecology, the application of monitoring methods, and the identification of economic thresholds and injury levels.


2021 ◽  
Vol 18 (1) ◽  
pp. 27-32
Author(s):  
A.M. Zongoma ◽  
D.B. Dangora ◽  
M. Sétamou ◽  
M.D. Alegbejo ◽  
O.J. Alabi

Insect-vectored viruses are a major threat to grapevine production but there is a dearth of information on the occurrence and distribution of key grapevine pests in Nigeria. The recent detection of grapevine leafroll associated virus-1 (GLRaV-1), a known insect-vectored ampelovirus, in Nigeria elevates the importance of the identification of its potential vectors as a precursor to assessing the risk of grapevine leafroll disease spread. This study was conducted to determine the occurrence and diversity of potential vectors of grapevine viruses and their natural enemies in vineyards across the savannah agro-ecological region of Nigeria. Forty vineyard and nursery locations were surveyed during 2016 and 45 arthropod samples were collected. The samples were first morphologically identified, and DNA barcoding was conducted on a subset of 16 representative samples using universal primers specific to the Mitochondrial Cytochrome Oxidase subunit I (mtCOI) gene of most insects. The results indicated the presence of two species of scale insects (Parasaissetia nigra and Saissetia coffeae) and two mealybug species (Maconellicoccus hirsutus and Ferrisia virgata), some ofwhich are potential grapevine virus vectors, in Nigerian vineyards. In addition, the natural enemies of these insect species were detected which includes three species of parasitoids (Anagyrus kamali, Anagyrus pseudococci and Encarsia inaron) and one predator (Hyperaspidius mimus). While the detection of mealybugs and scale insects underscore the risk of vector-mediated virus spread in Nigerian vineyards, the identification of their natural enemies indicates presence of natural biological control agents to facilitate an integrated management of economically important grapevine virus diseases in the country. Keywords: Mealybugs; scale insects; parasitoids and predators; insect vectors; grapevine viruses.


2017 ◽  
Vol 30 (4) ◽  
pp. 236 ◽  
Author(s):  
K. Selvaraj ◽  
R. Sundararaj ◽  
T. Venkatesan ◽  
Chandish R. Ballal ◽  
S. K. Jalali ◽  
...  

A invasive rugose spiraling whitefly (RSW) <em>Aleurodicus rugioperculatus</em> Martin (Hemiptera: Aleyrodidae) was found infesting coconut, banana, custard apple and several ornamental plants in Tamil Nadu, Andhra Pradesh and Kerala for the first time in India. The identity of the pest species was determined through morphological and molecular tools. Furthermore cytochrome c oxidase-I gene (658 bp) of RSW was sequenced (GenBank accession number KY209909) which would serve as an ideal molecular diagnostic marker for its identification irrespective of its phenotypic plasticity. During the survey, several natural enemies were recorded and maximum parasitism was recorded by <em>Encarsia guadeloupae</em> Viggiani (Hymenoptera: Aphelinidae) and its COI gene was sequenced and deposited as <em>Encarsia</em> sp. (GenBank accession number KY223606). Per cent parasitism ranged from 20.0 to 60.0 % in different collection locations, highest parasitism being recorded in Kerala as compared to other states. The predators recorded were <em>Mallada</em> sp., few coccinellids and predatory mites. This communication is the first report of the rugose spiraling whitefly, its host plant range and associated natural enemies in India.


2020 ◽  
Vol 6 (4) ◽  
pp. 243-259 ◽  
Author(s):  
Michael Staab ◽  
Andreas Schuldt

Abstract Purpose of Review Natural enemies are an important component for forest functioning. By consuming herbivores, they can be effective top-down regulators of potential pest species. Tree mixtures are generally expected to have larger predator and parasitoid populations compared to monocultures. This assumption is based on the “enemies” hypothesis, a classical ecological concept predicting a positive relationship between plant diversity (and complexity) and natural enemies, which, in turn, should increase top-down control in more diverse environments. However, the “enemies” hypothesis has mostly been tested and supported in relatively simple agricultural ecosystems. Until recently, research in forests was sparse. We summarize the upcoming knowledge-base for forests and identify forest characteristics likely shaping relationships between tree diversity, natural enemies (abundance, species richness, diversity), and top-down control. We further identify possible implications for mixed species forestry and key knowledge gaps. Recent Findings Tree diversity (almost exclusively quantified as tree species richness) does not consistently increase enemy abundance, diversity, or result in herbivore control. Tests of the “enemies” hypothesis are largely based on aboveground natural enemies (mainly generalists) and have highly variable outcomes across taxa and study systems, sometimes even finding a decrease in predator diversity with increasing tree diversity. Recurrent effects of tree species identity and composition indicate that a closer focus on tree functional and phylogenetic diversity might help to foster a mechanistic understanding of the specific circumstances under which tree diversity can promote top-down control. Summary Our review suggests that the “enemies” hypothesis may not unambiguously apply to forests. With trees as structurally complex organisms, even low-diversity forests can maintain a high degree of habitat heterogeneity and may provide niches for many predator and parasitoid species, possibly blurring correlations between tree and natural enemy diversity. Several further factors, such as latitude, identity effects, intraguild predation, or functional and phylogenetic components of biodiversity, may confound the predictions of the “enemies” hypothesis. We identify topics needing more research to fully understand under which conditions tree diversity increases natural enemy diversity and top-down control—knowledge that will be crucial for forest management.


2018 ◽  
Vol 10 (7) ◽  
pp. 167 ◽  
Author(s):  
Angélica Massarolli ◽  
Ana Regina Lucena Hoffmann ◽  
Bruna Magda Favetti ◽  
Alessandra Regina Butnariu

Studies on natural enemies are important to find new species and to develop management strategies to preserve them to help control pests in biological control programs. For the state of Mato Grosso, Brazil, which comprises the Amazon, Cerrado, and Pantanal biomes, few studies have been conducted on the diversity of these parasitoids, possible endemic and/or new species, as well as their potential as natural enemies. Thus, the present study was aimed at describing the diversity of parasitoids of the families Ichneumonidae (Hymenoptera) and Tachinidae (Diptera) associated with pest lepidopterans in soybean crops. Weekly sampling of pest lepidopterans was carried out during four soybean seasons (2009/2010, 2010/2011, 2011/2012 and 2012/2013). Parasitoid larvae were observed in the main lepidopteran pest species of soybean during the four soybean seasons. Three genera of the Ichneumonidae family, belonging to the genera Microcharops Roman, Ophionellus Westwood, and Podogaster Brullé. Six genera of the Tachinidae family occur in the state of Mato Grosso in soybean fields. The following genera were recorded: Archytas spp. Jaennicke, Phorocera spp. Robineau-Desvoidy, Gymnocarcelia spp. Townsend, Lespesia spp. Robineau-Desvoidy, Eucelatoria spp. Townsend, Chetogena spp. Rondani. These parasitoids were found parasitizing caterpillars of the Noctuidae (Lepidoptera), in species that had not yet been reported as hosts for the Neotropical region. Further studies are needed on the beneficial entomofauna and their preservation in agricultural environments.


2020 ◽  
Vol 113 (4) ◽  
pp. 1804-1809
Author(s):  
E P de Sousa Neto ◽  
J de A Mendes ◽  
R M C Filgueiras ◽  
D B Lima ◽  
R N C Guedes ◽  
...  

Abstract Integrated control tactics are often necessary for pest management. This is especially true for organisms such as the two-spotted spider mite, Tetranychus urticae Koch. The management of this mite pest species relies on pesticide use, but its short life cycle associated with high selection pressure results in frequent problems of acaricide resistance and population outbreaks. Therefore, combining acaricides and natural enemies is an appealing strategy for managing this pest species. The predatory mite Neoseiulus idaeus Denmark & Muma (Phytoseiidae) is important in arid environments, where other natural enemies show low efficacy. Thus, we investigated the effects of representative acaricides used for managing spider mites around the world in several crops (i.e., abamectin, fenpyroximate, and azadirachtin), on the functional and numerical responses of the phytoseid predator N. idaeus to increasing egg densities of its prey. Acaricide exposure did not affect the type of N. idaeus functional response or attack rate (a). However, acaricide exposure decreased the amount of consumed prey and increased prey handling time (Th). All acaricides affected the numerical response of the predator, which reduced oviposition rates. Therefore, caution is required in attempts to integrate the control methods.


2003 ◽  
Vol 93 (2) ◽  
pp. 137-144 ◽  
Author(s):  
H.F. Nahrung ◽  
G.R. Allen

AbstractChrysophtharta agricola (Chapuis) is a pest of commercial eucalypt plantations in Tasmania and Victoria. Vagility of pest populations may result in difficulty predicting temporal and spatial pest outbreaks, and influence genetic resistance to chemical control. Gene flow in this pest species was estimated to assess predicability of attack, the potential efficacy of natural enemies, and the likelihood of resistance build-up. Ten geographic populations of C. agricola (six from Tasmania, one from the Australian Capital Territory, one from New South Wales and two from Victoria) were examined for genetic variation and gene flow using cellulose acetate allozyme electrophoresis. Six enzyme systems (PGI, PGD, PGM, IDH, HEX and MPI) were consistently polymorphic and scorable and were used to quantify estimated gene flow between populations. FST values and analysis of molecular variance indicated that gene flow was restricted between populations. Chrysophtharta agricola exhibited high levels of heterozygosity, probably because of high allelic diversity, and because all loci examined were polymorphic. The southern-most population was the most genetically different to other Tasmanian populations, and may also have been the most recently colonized. Limited gene flow implies that outbreaks of C. agricola should be spatially predictable and populations susceptible to control by natural enemies. Our results also imply that genetic resistance to chemical control may occur under frequent application of insecticide. However, testing population movement between plantations and native forest also needs to be conducted to assess gene flow between forest types.


Sign in / Sign up

Export Citation Format

Share Document