THE TRIBOLOGICAL PROPERTIES OF LUBRICATING GREASES BASED ON RENEWABLE OILS

Tribologia ◽  
2016 ◽  
Vol 266 (2) ◽  
pp. 61-72
Author(s):  
Rafał KOZDRACH

The paper discusses the influence of vegetable oil basis on lubricating properties of their selected compositions. Four vegetable oils were used for production of lubricating greases: rapeseed, sunflower, soybean, and castor, all thickened with modified silica of Aerosil® type. The tribological properties of lubricating greases based on vegetable oils were investigated. On their basis, the most beneficial compositions were selected. The tribological properties of greases were estimated via measurements of limiting load of wear (Goz/40), welding load (Pz), scuffing load (Pt), limiting load of scuffing (Poz), and the limiting pressure of seizure (Poz). Based on the obtained results, it may be concluded that the best antiwear properties were shown by the lubricating compositions based on rapeseed oil, whereas the best antiscuffing properties have compositions using castor oil as a disperse phase.

2021 ◽  
Vol 37 ◽  
pp. 00030
Author(s):  
Alexander P. Bychenin ◽  
Oleg S. Volodko ◽  
Denis N. Bazhutov

The paper analyzes the main applications of alternative fuels and lubricants in automotive vehicles, considers the possibility of using vegetable oils as a working fluid for hydraulic systems of agricultural machinery. Based on the laboratory findings, it states the ways to improve a lubrication formula based on rapeseed oil. The formula is proven to be optimal if it includes 88.9% rapeseed oil + 3.7% D-11 + 3.2% EFO + 4.197% graphite + 0.003% MS-200A, which is superior in tribological properties to MGE-46V hydraulic oil, and can be recommended for use in hydraulic systems of agricultural machinery as an alternative to mineral oils.


2017 ◽  
Vol 139 (6) ◽  
Author(s):  
Shubrajit Bhaumik ◽  
Shubhabrata Datta ◽  
S. D. Pathak

The present work investigates the tribological properties of castor oil with various carbonaceous friction modifiers (nano and microsize additives) assessed using four-ball tester as per ASTM D 4172 and ASTM D 2783. Castor oil has been chosen because of its high viscosity and ease of availability. Graphite, multiwalled carbon nanotube (MWCNT), and multilayered graphene are used as friction modifiers (FMs) in castor oil on weight percentage basis. Significant enhancements of tribological properties with a certain level of concentration of friction modifiers have been observed. The surface features of the tested balls were analyzed using a three-dimensional noncontact type profilometer, scanning electron microscope (SEM), and energy dispersive system (EDS). Decrease in surface roughness indicated better antiwear properties in case of nanofriction modifiers-based castor oil as compared to micrographite-based and neat castor oil (NCO). In order to assess the suitability of castor oil as a replacement for mineral oil, the results of castor oil samples are also compared with commercially available mineral oil. The tribological properties of castor oil are found to be competitive and generally superior to the mineral gear oil. The data generated are used to develop a neural network model to map the input–output correlation.


2016 ◽  
Vol 245 (4) ◽  
pp. 352-365
Author(s):  
Sergii Boichenko ◽  
Kazimierz Lejda ◽  
Anna Iakovlieva ◽  
Hubert Kuszewski ◽  
Oksana Vovk

Antiwear properties of jet fuel, two kinds of biocomponents derived from rapeseed oil and their mixtures were investigated experimentally. Antiwear properties were estimated by the value of the scuffing load and the limiting load of scuffing applied to the friction pair working in a fuel medium. Biocomponents, mainly rapeseed oil FAME and rapeseed oil FAME modified via vacuum distillation were used during the study. It is found that lubricity of biocomponents is significantly higher comparing to conventional jet fuel. It is explained by the chemical composition of FAME: highly polarity of molecules stipulate their good adsorption at the surface of friction pair. High viscosity of biocomponents due to chemical structure positively influence on their lubricity. Adding biocomponents into jet fuel results in strengthening boundary film and thus improves antiwear properties of fuel blends. It is determined that FAME modified via vacuum distillation possess better lubricating ability comparing to standard FAME derived from rapeseed oil. Correlation between viscosity and lubricity of fuel is shown


2018 ◽  
Vol 140 (6) ◽  
Author(s):  
Rafał Kozdrach ◽  
Jarosław Skowroński

The paper presents the research results on the relations between additive content and tribological, rheological, and oxidizing properties of lubricating greases. The greases were based on linseed oil, thickened with amorphous silica Aerosil® and modified with different concentration of polyvinylpyrrolidone. The greases were tested tribologically according to the test on T-02 testing machine and referred to the unmodified control. The evaluation of tribological properties was based on the following parameters: welding load, scuffing load, limiting load of wear, limiting load of scuffing, and limiting pressure of seizure. The results of tribological research revealed the most promising impact of the 3% addition of polyvinylpyrrolidone. All of the crucial parameters were improved in comparison to the unmodified control grease. The spectral analyses revealed that some of the components undergo oxidation during mechanical forces, leading to the formation of the oxidized organic compounds. These substances generated a layer, counteracting the wear of lubricated tribosystem. The improved resistance to oxidation of the tested lubricants with polyvinylpyrrolidone can be explained by the presence of highly hydrophilic pyrrolidone groups and hydrophobic alkyl group in polyvinylpyrrolidone (PVP) molecule. These compounds combine with hydrocarbon chains of linseed oil and act synergistically with the silicon dioxide molecules. The introduction of polyvinylpyrrolidone caused the improvement in dynamic viscosity at lower shear rates and a significant change of viscosity in low temperatures. An increased value of the yield point of the tested lubricating compositions after introduction of the additive was also observed.


Transport ◽  
2011 ◽  
Vol 26 (2) ◽  
pp. 121-127 ◽  
Author(s):  
Raimondas Kreivaitis ◽  
Juozas Padgurskas ◽  
Milda Gumbytė ◽  
Violeta Makarevičienė ◽  
Bronislovas Spruogis

Approximately a half of all consumed lubricants, in one or another way, end up in the environment. Some countries put forward recommendations or even requirements for the use of environmentally friendly bio-lubricants the purpose of which is to reduce a negative influence of lubricants. The priority areas of using environmentally friendly lubricants cover water transport, hydraulic systems in forestry machinery, railway applications, road building machines etc. Particularly it is the case when an increased possibility of putting a lubricant in the environment occurs. Regarding good lubricity and excellent biodegradability, vegetable oils are widely used as environmentally friendly lubricants. The biggest disadvantage of vegetable oils as base stock for lubricants is pure oxidation stability. This article deals with the influence of thermal oxidation on tribological properties of rapeseed oil. The obtained results show that oxidation decreases lubrication ability due to structural changes in oil. The greatest negative influence of oxidation is obtained at the end of the induction period. Santrauka Gerai žinomas faktas, jog apie pusė visų šiuo metu naudojamų alyvų vienokiu ar kitokiu būdu patenka į aplinką. Siekiant sumažinti tepamųjų medžiagų neigiamą įtaką aplinkai, tam tikrose srityse rekomenduojama, o kai kuriose šalyse net reikalaujama naudoti aplinkai nekenkiančias biologines tepamąsias medžiagas. Susidaro didesnė galimybė šioms medžiagoms tiesiogiai patekti į aplinką ir prioritetinėmis šių medžiagų naudojimo sritimis yra laikomas vandens transportas, miškų ūkio mašinų hidraulinės sistemos, geležinkelio mechanizmai, kelių tiesimo mašinos ir kt. Dėl gerų tepamųjų savybių ir gero biologinio suirstamumo augaliniai aliejai yra gana plačiai naudojami gaminant aplinkai nekenkiančias alyvas. Didžiausias tokių bazinių tepamųjų medžiagų trūkumas yra palyginti mažas atsparumas oksidacijai. Šiame straipsnyje nagrinėjama rapsų aliejaus oksidacijos įtaka jo tribologinėms savybėms. Gauti rezultatai rodo, jog aliejaus oksidacija dėl jame vykstančių struktūrinių pokyčių padidina trinties nuostolius ir paviršių nusidėvėjimą, didžiausią įtaką šiems parametrams darydama pasibaigus alyvos oksidacijos indukciniam periodui. Резюме Хорошо известен факт, что около половины применяемого масла попадает в окружающую среду. С целью сократить вред, наносимый окружающей среде от этих выбросов, рекомендуется, а в некото рых странах и требуется применение в некоторых областях биологических смазочных материалов. Приоритетными областями для применения этих материалов являются водный транспорт, гидравлические системы машин лесного хозяйства, механизмы железной дороги, машины для строительства дорог и др., т. е. те, в которых имеется повышенная возможность попадания смазочных материалов в окружающую среду. Растительные масла из-за хороших смазочных свойств и быстрого биологического распада широко применяются при производстве биологических масел. Наибольшим недостатком таких базовых масел является их относительно небольшая стойкость к оксидации. В представляемой статье приведены результаты исследований влияния оксидации рапсового масла на его трибологические свойства. Полученные результаты показывают, что оксидация масла из-за происходящих в нем структурных изменений увеличивает потери на трение и изнашивание поверхности, наибольшее влияние проявляется при окончании индукционного периода оксидации масла.


2007 ◽  
Vol 9 (3) ◽  
pp. 147-150 ◽  
Author(s):  
Marian Sułek ◽  
Witold Sas ◽  
Jan Przondo

Vegetable oils derivatives as the modifiers of the lubricating properties of water Water has been used as a lubricating medium in a number of applications in tribology. Its insufficient lubricating properties are modified by appropriate additives. The aim of the tribological studies presented in this paper is an application of a mixture containing triglyceride ethoxylates and partial glycerides as well as esters and a block copolymer as additives. All the components are commercially available and relatively cheap. In order to examine the aqueous solutions, two kinds of tests were carried out on a four-ball apparatus: at the fixed load - measurements of the friction coefficient and wear as a function of time and seizure tests which made it possible to determine the scuffing load (Pt), the seizure load (Poz) and the limiting pressure of seizure (poz). Changes in the quantities measured were analyzed as a function of concentrations ranging from 0.001% to 100%. In the fixed load tests the coefficient of friction decreased almost eight-fold, reaching the lowest value of 0.06 at above 0.1% concentration of the additive. Wear decreased over 3.5-fold. In the seizure tests a relatively high efficiency of the additive package was observed at the concentration of the order of the thousandth part of one percent. The compositions reached the maximum anti-seizure capacity at the concentrations of 4 and 10%. It is particularly interesting to note that the stability of the lubricating film being formed was characterized by the scuffing load. The maximum value of Pt was about 4kN high. Summing up, on the basis of the results obtained it may be concluded that the choice of package additives was correct and it effectively modified the lubricating properties of water.


2015 ◽  
Vol 813-814 ◽  
pp. 695-699
Author(s):  
S. Arumugam ◽  
G. Sriram ◽  
A. Hemanth Sai Kumar Chowdary ◽  
Janga Subramanya Sai

The rising demand for environmentally acceptable lubricant has led researchers to look to vegetable oils as an alternative to petroleum based lubricants. Vegetable oils have radically distinctive properties owing to their unique chemical structure which have greater ability to lubricate and have higher biodegradability. In spite of advantages, they are limited to inadequate thermo-oxidative stability and poor low-temperature properties which hinder their utilization. In the present study in order to produce a bio lubricant with good thermo-oxidative stability, rapeseed oil was subjected to two different chemical modification techniques viz., epoxidation method and successive transesterification method. The thermo-oxidative stability of formulated oil was analysed using Thermo Gravimetric Analysis (TGA). TGA analysis divulges that the thermo-oxidative stability of rapeseed oil was greatly improved with the epoxidation method in comparison with the successive transesterification method.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Yu Su ◽  
Le Gong ◽  
Dandan Chen

This paper used graphite nanoparticles with the diameter of 35 and 80 nm and LB2000 vegetable based oil to prepare graphite oil-based nanofluids with different volume fractions by two-step method. The tribological properties of graphite nanoparticles as LB2000 vegetable based oil additive were investigated with a pin-on-disk friction and wear tester. Field emission scanning electron microscope (FE-SEM) and energy dispersive spectroscopy (EDS) were used to examine the morphology and the content of some typical elements of wear scar, respectively. Further, the lubrication mechanism of graphite nanoparticles was explored. It was found that graphite nanoparticles as vegetable based oil additive could remarkably improve friction-reducing and antiwear properties of pure oil. With the increase of volume fraction of graphite nanoparticles, the friction coefficient and the wear volume of disk decreased. At the same volume fraction, the smaller particles, the lower friction coefficient and wear volume. The main reason for the improvement in friction-reducing and antiwear properties of vegetable based oil using graphite nanoparticles was that graphite nanoparticles could form a physical deposition film on the friction surfaces.


2018 ◽  
Vol 35 (1) ◽  
pp. 47
Author(s):  
Fernando Carvalho Silva ◽  
Kiany Sirley Brandão Cavalcante ◽  
Hilton Costa Louzeiro ◽  
Katia Regina Marques Moura ◽  
Adeilton Pereira Maciel ◽  
...  

Maranhão state in Brazil presents a big potential for the cultivation of several oleaginous species, such as babassu, soybean, castor oil plant, etc... These vegetable oils can be transformed into biodiesel by the transesterification reaction in an alkaline medium, using methanol or ethanol. The biodiesel production from a blend of these alcohols is a way of adding the technical and economical advantages of methanol to the environmental advantages of ethanol. The optimized alcohol blend was observed to be a methanol/ethanol volume ratio of 80 % MeOH: 20 % EtOH. The ester content was of 98.70 %, a value higher than the target of the ANP, 96.5 % (m/m), and the biodiesel mass yield was of 95.32 %. This biodiesel fulfills the specifications of moisture, specific gravity, kinematic viscosity and percentages of free alcohols (methanol plus ethanol) and free glycerin.


2009 ◽  
Vol 27 (Special Issue 1) ◽  
pp. S185-S187 ◽  
Author(s):  
Z. Réblová ◽  
D. Tichovská ◽  
M. Doležal

Relationship between polymerised triacylglycerols formation and tocopherols degradation was studied during heating of four commercially accessible vegetable oils (rapeseed oil, classical sunflower oil, soybean oil and olive oil) on the heating plate with temperature 180°C. The content of polymerised triacylglycerols 6% (i.e. half of maximum acceptable content) was achieved after 5.3, 4.2, 4.1, and 2.6 hours of heating for olive oil, soybean oil, rapeseed oil and sunflower oil, respectively, while decrease in content of total tocopherols to 50% of the original content was achieved after 3.4, 1.6, 1.3, and 0.5 hours of heating for soybean oil, rapeseed oil, sunflower oil and olive oil, respectively. Because of the high degradation rate of tocopherols, decrease in content of total tocopherols to 50% of the original content was achieved at content of polymerised triacylglycerols 0.6%, 1.9%, 2.8% and 4.9% for olive oil, rapeseed oil, sunflower oil and soybean oil, respectively, i.e. markedly previous to the frying oil should be replaced.


Sign in / Sign up

Export Citation Format

Share Document