AN APPLICATION OF MACHINE LEARNING TO SHIPPING EMISSION INVENTORY

Author(s):  
T Fletcher ◽  
V Garaniya ◽  
S Chai ◽  
R Abbassi ◽  
R J Brown ◽  
...  

The objective of this study is to develop a shipping emission inventory model incorporating Machine Learning (ML) tools to estimate gaseous emissions. The tools enhance the emission inventories which currently rely on emission factors. The current inventories apply varied methodologies to estimate emissions with mixed accuracy. Comprehensive Bottom-up approach have the potential to provide very accurate results but require quality input. ML models have proven to be an accurate method of predicting responses for a set of data, with emission inventories an area unexplored with ML algorithms. Five ML models were applied to the emission data with the best-fit model judged based on comparing the real mean square errors and the R-values of each model. The primary gases studied are from a vessel measurement campaign in three modes of operation; berthing, manoeuvring, and cruising. The manoeuvring phase was identified as key for model selection for which two models performed best.

2018 ◽  
Vol Vol 160 (A4) ◽  
Author(s):  
T Fletcher ◽  
V Garaniya ◽  
S Chai ◽  
R Abbassi ◽  
H Yu ◽  
...  

The objective of this study is to develop a shipping emission inventory model incorporating Machine Learning (ML) tools to estimate gaseous emissions. The tools enhance the emission inventories which currently rely on emission factors. The current inventories apply varied methodologies to estimate emissions with mixed accuracy. Comprehensive Bottom-up approach have the potential to provide very accurate results but require quality input. ML models have proven to be an accurate method of predicting responses for a set of data, with emission inventories an area unexplored with ML algorithms. Five ML models were applied to the emission data with the best-fit model judged based on comparing the real mean square errors and the R-values of each model. The primary gases studied are from a vessel measurement campaign in three modes of operation; berthing, manoeuvring, and cruising. The manoeuvring phase was identified as key for model selection for which two models performed best.


Proceedings ◽  
2020 ◽  
Vol 78 (1) ◽  
pp. 5
Author(s):  
Raquel de Melo Barbosa ◽  
Fabio Fonseca de Oliveira ◽  
Gabriel Bezerra Motta Câmara ◽  
Tulio Flavio Accioly de Lima e Moura ◽  
Fernanda Nervo Raffin ◽  
...  

Nano-hybrid formulations combine organic and inorganic materials in self-assembled platforms for drug delivery. Laponite is a synthetic clay, biocompatible, and a guest of compounds. Poloxamines are amphiphilic four-armed compounds and have pH-sensitive and thermosensitive properties. The association of Laponite and Poloxamine can be used to improve attachment to drugs and to increase the solubility of β-Lapachone (β-Lap). β-Lap has antiviral, antiparasitic, antitumor, and anti-inflammatory properties. However, the low water solubility of β-Lap limits its clinical and medical applications. All samples were prepared by mixing Tetronic 1304 and LAP in a range of 1–20% (w/w) and 0–3% (w/w), respectively. The β-Lap solubility was analyzed by UV-vis spectrophotometry, and physical behavior was evaluated across a range of temperatures. The analysis of data consisted of response surface methodology (RMS), and two kinds of machine learning (ML): multilayer perceptron (MLP) and support vector machine (SVM). The ML techniques, generated from a training process based on experimental data, obtained the best correlation coefficient adjustment for drug solubility and adequate physical classifications of the systems. The SVM method presented the best fit results of β-Lap solubilization. In silico tools promoted fine-tuning, and near-experimental data show β-Lap solubility and classification of physical behavior to be an excellent strategy for use in developing new nano-hybrid platforms.


2014 ◽  
Vol 14 (20) ◽  
pp. 10963-10976 ◽  
Author(s):  
J. J. P. Kuenen ◽  
A. J. H. Visschedijk ◽  
M. Jozwicka ◽  
H. A. C. Denier van der Gon

Abstract. Emissions to air are reported by countries to EMEP. The emissions data are used for country compliance checking with EU emission ceilings and associated emission reductions. The emissions data are also necessary as input for air quality modelling. The quality of these "official" emissions varies across Europe. As alternative to these official emissions, a spatially explicit high-resolution emission inventory (7 × 7 km) for UNECE-Europe for all years between 2003 and 2009 for the main air pollutants was made. The primary goal was to supply air quality modellers with the input they need. The inventory was constructed by using the reported emission national totals by sector where the quality is sufficient. The reported data were analysed by sector in detail, and completed with alternative emission estimates as needed. This resulted in a complete emission inventory for all countries. For particulate matter, for each source emissions have been split in coarse and fine particulate matter, and further disaggregated to EC, OC, SO4, Na and other minerals using fractions based on the literature. Doing this at the most detailed sectoral level in the database implies that a consistent set was obtained across Europe. This allows better comparisons with observational data which can, through feedback, help to further identify uncertain sources and/or support emission inventory improvements for this highly uncertain pollutant. The resulting emission data set was spatially distributed consistently across all countries by using proxy parameters. Point sources were spatially distributed using the specific location of the point source. The spatial distribution for the point sources was made year-specific. The TNO-MACC_II is an update of the TNO-MACC emission data set. Major updates included the time extension towards 2009, use of the latest available reported data (including updates and corrections made until early 2012) and updates in distribution maps.


2017 ◽  
Author(s):  
Jianlin Hu ◽  
Xun Li ◽  
Lin Huang ◽  
Qi Ying ◽  
Qiang Zhang ◽  
...  

Abstract. Accurate exposure estimates are required for health effects analyses of severe air pollution in China. Chemical transport models (CTMs) are widely used tools to provide detailed information of spatial distribution, chemical composition, particle size fractions, and source origins of pollutants. The accuracy of CTMs' predictions in China is largely affected by the uncertainties of public available emission inventories. The Community Multi-scale Air Quality model (CMAQ) with meteorological inputs from the Weather Research and Forecasting model (WRF) were used in this study to simulate air quality in China in 2013. Four sets of simulations were conducted with four different anthropogenic emission inventories, including the Multi-resolution Emission Inventory for China (MEIC), the Emission Inventory for China by School of Environment at Tsinghua University (SOE), the Emissions Database for Global Atmospheric Research (EDGAR), and the Regional Emission inventory in Asia version 2 (REAS2). Model performance was evaluated against available observation data from 422 sites in 60 cities across China. Model predictions of O3 and PM2.5 with the four inventories generally meet the criteria of model performance, but difference exists in different pollutants and different regions among the inventories. Ensemble predictions were calculated by linearly combining the results from different inventories under the constraint that sum of the squared errors between the ensemble results and the observations from all the cities was minimized. The ensemble annual concentrations show improved agreement with observations in most cities. The mean fractional bias (MFB) and mean fractional errors (MFE) of the ensemble predicted annual PM2.5 at the 60 cities are −0.11 and 0.24, respectively, which are better than the MFB (−0.25–−0.16) and MFE (0.26–0.31) of individual simulations. The ensemble annual 1-hour peak O3 (O3-1 h) concentrations are also improved, with mean normalized bias (MNB) of 0.03 and mean normalized errors (MNE) of 0.14, compared to MNB of 0.06–0.19 and MNE of 0.16–0.22 of the individual predictions. The ensemble predictions agree better with observations with daily, monthly, and annual averaging times in all regions of China for both PM2.5 and O3-1 h. The study demonstrates that ensemble predictions by combining predictions from individual emission inventories can improve the accuracy of predicted temporal and spatial distributions of air pollutants. This study is the first ensemble model study in China using multiple emission inventories and the results are publicly available for future health effects studies.


2015 ◽  
Vol 8 (7) ◽  
pp. 5419-5435 ◽  
Author(s):  
W. Paja ◽  
M. Wrzesień ◽  
R. Niemiec ◽  
W. R. Rudnicki

Abstract. The climate models are extremely complex pieces of software. They reflect best knowledge on physical components of the climate, nevertheless, they contain several parameters, which are too weakly constrained by observations, and can potentially lead to a crash of simulation. Recently a study by Lucas et al. (2013) has shown that machine learning methods can be used for predicting which combinations of parameters can lead to crash of simulation, and hence which processes described by these parameters need refined analyses. In the current study we reanalyse the dataset used in this research using different methodology. We confirm the main conclusion of the original study concerning suitability of machine learning for prediction of crashes. We show, that only three of the eight parameters indicated in the original study as relevant for prediction of the crash are indeed strongly relevant, three other are relevant but redundant, and two are not relevant at all. We also show that the variance due to split of data between training and validation sets has large influence both on accuracy of predictions and relative importance of variables, hence only cross-validated approach can deliver robust prediction of performance and relevance of variables.


Sign in / Sign up

Export Citation Format

Share Document