scholarly journals Genetic Potential and Possible Improvement of Sesamum indicum L.

2020 ◽  
Author(s):  
Muthulakshmi Chellamuthu ◽  
Selvi Subramanian ◽  
Manonmani Swaminathan

Sesame (Sesamum indicum L.) is one of the traditional oil seed crop widely cultivated in many countries. The top producers of sesame seeds are mainly Tanzania, Myanmar, India, China and Japan. Sesame oil contains high level of unsaturated fatty acids (80%) and low levels of saturated fatty acids (20%). The main fatty acids are palmitic, stearic, oleic, linoleic and trace amounts of linolenic fatty acids. Sesame seed contains 50–60% of high-quality oil rich in natural antioxidants such as sesamin, sesamolin, sesaminol and sesamol it enhances the stability and keeping quality of sesame oil. Sesame seeds have good sources of dietary fibre, fats, vitamins, minerals, proteins and rich in anti-oxidants. Polyunsaturated fatty acids in sesame will reduce the risk of high blood pressure, cardiac disorders and blood sugar levels. Sesame is believed to have been originated in India where maximum variability of genetic resources is available. High yielding varieties available to date have reached the yield plateau even with the advanced cultivation practices. The area under oilseed crops cultivation also reducing every year. Hence, there is an urgent need to increase the oil content and yield of Indian sesame varieties. Understanding the available germplasm and novel interventions to develop high yielding varieties warrant both molecular and phenotypic data which is meagre in case of sesame.

1970 ◽  
Vol 42 (1) ◽  
pp. 67-74 ◽  
Author(s):  
MS Rahman ◽  
MA Hossain ◽  
GM Ahmed ◽  
MM Uddin

The oil of 3 different sesame (Sesamum indicum linn.) varieties were extracted. The physico-chemical characteristics, lipids and glyceride compositions of oil were studied. The oil content of sesame seed kernels grown under the soil and climatic condition of Bangladesh varied from 42.5-46.2 % depending on the variety. The total lipid extracts were fractionated into three major lipid groups neutral lipids, glycolipids and phospholipids by silicic acid column chromatography. The neutral lipids were averaged to 92.5 % of the total weight of the lipid applied. The oils were fractionated into mono-, di-and triglycerides by silicic acid columb chromatography. The triglycerides varied from 90.3-92.5 %, diglycerides from 2.5-3.2 % and monoglycerides from 2.4-3.1 % depending on the varieties and soil conditions of the areas on which the plant grow. Saturated and unsaturated fatty acids present in the oil were separated and varied from 12.2-15.4 % and 82.9-85.8 % respectively. The pecentage composition of fatty acids was found to be linoleic acid 40.3, oleic acid 44.0, stearic acid 4.3, palmitic acid 9.0 and arachidic acid 0.7. Bangladesh J. Sci. Ind. Res. 42(1), 67-74, 2007


2019 ◽  
Vol 31 (12) ◽  
pp. 3004-3008
Author(s):  
A.A. El-Refai ◽  
M.M. Rabie ◽  
Rania E. El-Gammal ◽  
W.A. Al-Saban

This work aims to study the effect of using nanoemulsion particles on the stability of sesame seed oil emulsion. During the roasting process of sesame seeds (Sohage-1), some physico-chemical properties of sesame seeds and its oil were determined. The moisture, protein and fiber contents were decreased whereas oil, ash and arbohydrates contents were increased. Sesame oil was extracted from roasted sesame seeds using mechanical pressing; some physico-chemical properties for extracted oil were determined. Results indicated that colour, acid value, free fatty acids (%), peroxide and hydrolysis values were increased, while saponification value was decreased in sesame oil. Also traditional and nanoemulsions form of sesame oil were prepared. Characterization of these emulsions particles was conducted using zeta potential and transmission electron microscope (TEM). The results also indicated that small droplet size of nanoemulsion particles being 26.28 nm in emulsion which prepared by using nano-technique as compared with those of 638.8 nm in traditional emulsion type and low polydispersity index (PDI) was nanoemulsion particles 0.266. This lead to more uniformity in droplet size thus could improve the stability of emulsion system. The TEM results of nanoemulsion particles of sesame oil showed that spherical droplets and nearly similarity in shape in nanoemulsion in compared with semi-spherical and varied particles size in traditional one. Creaming index, centrifugation test, conductivity and freeze-thaw cycles were used to evaluate all type of prepared emulsion stability. The nanoemulsion particles of sesame oil were found to be more stable than those of traditional one. These results indicated that the nanoemulsion process could increase the stability of prepared emulsion. Thus, using of nanoemulsion technique could be used as commercial way to enhance the stability of prepared emulsion.


2020 ◽  
Vol 45 (4) ◽  
Author(s):  
N. E. Okoronkwo ◽  
M. O. Iwuagwu ◽  
J. C. Igwe

The functional components - phytochemicals, vitamin, proximate, mineral and fatty acid compositions of three different species of sesame seeds: S. orientale, S. radiatum and S. V. Ex. Sudan were evaluated to establish use as functional food. Also the impact of boiling in water as a method of food processing was investigated on the alkaloid and flavonoid as well as vitamin compositions at varying times. The results revealed the presence of alkaloids, flavanoids, saponin, tannin and phenol of which S. radiatum recorded the highest percentage of flavanoid (25.333±1.528%) and least percentage alkaloid (35.333±0.577%). The highest vitamin C concentration was observed in S. V. Ex. Sudan (0.0062±0.0002) and vitamin E was highest in S. radiatum (0.1781±0.0006) which also had the highest lipid content of 58.9 + 0.75% indicating highest oil content compared to the other two species. Sesamum V. Ex. Sudan had highest crude fibre of 8.5 + 0.92%. Sesamum radiatum contained highest calcium, magnesium, zinc copper and iron while S. orientale had highest sodium and cobalt. The oil extracted with ethanol contains more different types of fatty acids than the manually extracted oil. There were more different unsaturated fatty acids than saturated ones in the seeds. The Saturated fatty acids (SFA) identified in the oil samples were caproic acid (C6:0) found only in the oil extracted with ethanol but not in the manually extracted one; palmitic (C16:0), stearic (C18:0), arachidic acid (C20.0), behenic acid (C22.0), and lignoceric acid (C24.0). Monounsaturated fatty acids (MUFA) identified in the samples were myristoleic acid (C14:1) which was found only in the oil extracted with ethanol; palmitoleic acid (C16:1) oleic [C18.1(9)], vaccenic acid [C18.1(11)], eicosenoic acid (C20.1) and erusic acid (C22:1). Polyunsaturated fatty acids (PUFA) identified in the oil samples were linoleic (C18:2),, alpha linolenic acid (C18:3),, eicosadienoic acid (C20.2), arachidonic (C20.4), dihomo-Y-linolenic (C20.3) and docosahexaenoic (C22:6) acids. The oil samples were rich especially in oleic [C18.1(9)] and vaccenic acid [C18.1(11)]. More so, considerable amount of alkaloid, flavanoid and vitamins contents were recorded after a maximum boiling time of thirty minutes for the cooked samples. The presence of these components predisposes these sesame seeds as valuable functional food.


2020 ◽  
Vol 20 (2) ◽  
pp. 38-40
Author(s):  
A. Levitsky ◽  
A. Lapinska ◽  
I. Selivanskaya

The article analyzes the role of essential polyunsaturated fatty acids (PUFA), especially omega-3 series in humans and animals. The biosynthesis of essential PUFA in humans and animals is very limited, so they must be consumed with food (feed). Тhe ratio of omega-3 and omega-6 PUFA is very important. Biomembranes of animal cells contain about 30% PUFA with a ratio of ω-6/ ω-3 1-2. As this ratio increases, the physicochemical properties of biomembranes and the functional activity of their receptors change. The regulatory function of essential PUFA is that in the body under the action of oxygenase enzymes (cyclooxygenase, lipoxygenase) are formed extremely active hormone-like substances (eicosanoids and docosanoids), which affect a number of physiological processes: inflammation, immunity, metabolism. Moreover, ω-6 PUFA form eicosanoids, which have pro-inflammatory, immunosuppressive properties, and ω-3 PUFAs form eicosanoids and docosanoids, which have anti-inflammatory and immunostimulatory properties. Deficiency of essential PUFA, and especially ω-3 PUFA, leads to impaired development of the body and its state of health, which are manifestations of avitaminosis F. Prevention and treatment of avitaminosis F is carried out with drugs that contain PUFA. To create new, more effective vitamin F preparations, it is necessary to reproduce the model of vitamin F deficiency. An experimental model of vitamin F deficiency in white rats kept on a fat –free diet with the addition of coconut oil, which is almost completely free of unsaturated fatty acids, and saturated fatty acids make up almost 99 % of all fatty acids was developed. The total content of ω-6 PUFA (sum of linoleic and arachidonic acids), the content of ω-3 PUFA (α-linolenic, eicosapentaenoic and docosahexaenoic acids) in neutral lipids (triglycerides and cholesterol esters) defined. Тhe content of ω-6 PUFA under the influence of coconut oil decreased by 3.3 times, and the content of ω-3 PUFA - by 7.5 times. Тhe influence of coconut oil, the content of ω-6 PUFA decreased by 2.1 times, and the content of ω-3 PUFA - by 2.8 times. The most strongly reduces the content of ω-3 PUFA, namely eicosapentaenoic, coconut oil, starting from 5 %. Consumption of FFD with a content of 15 % coconut oil reduces the content of eicosapentaenoic acid to zero, ie we have an absolute deficiency of one of the most important essential PUFAs, which determined the presence of vitamin F deficiency.


2014 ◽  
Vol 4 (1) ◽  
pp. 31-39
Author(s):  
Siwitri Kadarsih

The objective was to get beef that contain unsaturated fatty acids (especially omega 3 and 6), so as to improve intelligence, physical health for those who consume. The study design using CRD with 3 treatments, each treatment used 4 Bali cattle aged approximately 1.5 years. Observations were made 8 weeks. Pasta mixed with ginger provided konsentrat. P1 (control); P2 (6% saponification lemuru fish oil, olive oil 1%; rice bran: 37.30%; corn: 62.70%; KLK: 7%, ginger paste: 100 g); P3 (lemuru fish oil saponification 8%, 2% olive oil; rice bran; 37.30; corn: 62.70%; KLK: 7%, ginger paste: 200 g). Konsentrat given in the morning as much as 1% of the weight of the cattle based on dry matter, while the grass given a minimum of 10% of the weight of livestock observation variables include: fatty acid composition of meat. Data the analyzies qualitative. The results of the study showed that the composition of saturated fatty acids in meat decreased and an increase in unsaturated fatty acids, namely linoleic acid (omega 6) and linolenic acid (omega 3), and deikosapenta deikosaheksa acid.Keywords : 


2020 ◽  
Vol 16 (2) ◽  
pp. 142-154 ◽  
Author(s):  
Hadi Emamat ◽  
Zahra Yari ◽  
Hossein Farhadnejad ◽  
Parvin Mirmiran

Recent evidence has highlighted that fat accumulation, particularly abdominal fat distribution, is strongly associated with metabolic disturbance. It is also well-recognized that the metabolic responses to variations in macronutrients intake can affect body composition. Previous studies suggest that the quality of dietary fats can be considered as the main determinant of body-fat deposition, fat distribution, and body composition without altering the total body weight; however, the effects of dietary fats on body composition have controversial results. There is substantial evidence to suggest that saturated fatty acids are more obesogen than unsaturated fatty acids, and with the exception of some isomers like conjugate linoleic acid, most dietary trans fatty acids are adiposity enhancers, but there is no consensus on it yet. On the other hand, there is little evidence to indicate that higher intake of the n-3 and the n-6 polyunsaturated fatty acids can be beneficial in attenuating adiposity, and the effect of monounsaturated fatty acids on body composition is contradictory. Accordingly, the content of this review summarizes the current body of knowledge on the potential effects of the different types of dietary fatty acids on body composition and adiposity. It also refers to the putative mechanisms underlying this association and reflects on the controversy of this topic.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lihong Ma ◽  
Xinqi Cheng ◽  
Chuan Wang ◽  
Xinyu Zhang ◽  
Fei Xue ◽  
...  

Abstract Background Cottonseed is one of the major sources of vegetable oil. Analysis of the dynamic changes of fatty acid components and the genes regulating the composition of fatty acids of cottonseed oil is of great significance for understanding the biological processes underlying biosynthesis of fatty acids and for genetic improving the oil nutritional qualities. Results In this study, we investigated the dynamic relationship of 13 fatty acid components at 12 developmental time points of cottonseed (Gossypium hirsutum L.) and generated cottonseed transcriptome of the 12 time points. At 5–15 day post anthesis (DPA), the contents of polyunsaturated linolenic acid (C18:3n-3) and saturated stearic acid (C18:0) were higher, while linoleic acid (C18:2n-6) was mainly synthesized after 15 DPA. Using 5 DPA as a reference, 15,647 non-redundant differentially expressed genes were identified in 10–60 DPA cottonseed. Co-expression gene network analysis identified six modules containing 3275 genes significantly associated with middle-late seed developmental stages and enriched with genes related to the linoleic acid metabolic pathway and α-linolenic acid metabolism. Genes (Gh_D03G0588 and Gh_A02G1788) encoding stearoyl-ACP desaturase were identified as hub genes and significantly up-regulated at 25 DPA. They seemed to play a decisive role in determining the ratio of saturated fatty acids to unsaturated fatty acids. FAD2 genes (Gh_A13G1850 and Gh_D13G2238) were highly expressed at 25–50 DPA, eventually leading to the high content of C18:2n-6 in cottonseed. The content of C18:3n-3 was significantly decreased from 5 DPA (7.44%) to 25 DPA (0.11%) and correlated with the expression characteristics of Gh_A09G0848 and Gh_D09G0870. Conclusions These results contribute to our understanding on the relationship between the accumulation pattern of fatty acid components and the expression characteristics of key genes involved in fatty acid biosynthesis during the entire period of cottonseed development.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1133
Author(s):  
Atique Ahmed Behan ◽  
Muhammad Tayyab Akhtar ◽  
Teck Chwen Loh ◽  
Sharida Fakurazi ◽  
Ubedullah Kaka ◽  
...  

The supplementation of rumen bypass fat (RBF) has remained one of the preferred approaches used to decrease undesirable saturated fatty acids (FA) and increase beneficial unsaturated FA in the meat. This study was planned to evaluate the influences of rumen bypass fats on meat quality, fatty acid and metabolic profiles in male Dorper sheep (n = 36) with 24.66 ± 0.76 kg (mean ± standard error) initial body weight. Treatment comprised a basal diet (30:70 rice straw to concentrate) with no added RBF as a control (CON), basal diet with prilled fat (PF), basal diet with prilled fat plus lecithin (PFL) and basal diet with calcium soap of palm fatty acids (CaS). The findings revealed that cooking loss, drip loss and shear force in longissimus dorsi (LD) muscle were not affected by RBF supplementation, while meat pH was significantly higher in the CaS on aging day 1. However, the diet supplemented with prilled fat and lecithin modified the meat’s fatty acid profile significantly by increasing unsaturated fatty acids and decreasing saturated fats. The relative quantification of the major differentiating metabolites found in LD muscle of sheep showed that total cholesterol, esterified cholesterol, choline, glycerophosphocholine and glycerophospholipids were significantly lower in CaS and PFL diets, while glycerol and sphingomyelin were significantly higher in CaS and PFL diets. Most of the metabolites in the liver did not show any significant difference. Based on our results, the supplementation of protected fats did not have a negative influence on meat quality and the meat from Dorper sheep fed prilled fat with lecithin contained more healthy fatty acids compared to other diets.


2009 ◽  
Vol 2009 ◽  
pp. 212-212
Author(s):  
S J Hosseini Vashan ◽  
N Afzali ◽  
A Golian ◽  
M Malekaneh ◽  
A Allahressani

Palm oil is the most abundant of all oils produced globally. It is very high in saturated fatty acids specifically palmitic acid, but other fatty acids (monounsaturated (MUFA) and polyunsaturated) are presented at low concentrations. In the processing plant some high amount of oleic acid with some other unsaturated fatty acids are extracted and marketed as Palm olein oil, and used to reduce blood or egg cholesterol (Rievelles et al., 1994). The objective of this study was to determine the optimum level of dietary palm olein oil required to enrich the mono-unsaturated fatty acid content of yolk, egg cholesterol and antibody titre.


Sign in / Sign up

Export Citation Format

Share Document