scholarly journals Syzygium cumini Mediated Green Synthesis of Silver Nanoparticles for Reduction of 4-Nitrophenol and Assessment of its Antibacterial Activity

2021 ◽  
Author(s):  
Samadhan R. Waghmode ◽  
Amol A. Dudhane ◽  
Vaibhav P. Mhaindarkar

The biosynthesis of silver nanoparticles (AgNPs) has become more significant in the recent years owing to its applications in catalysis, imaging, drug delivery, nano-device fabrication and in medicine. We propose the synthesis of silver nanoparticles from the plant extract of Syzygium cumini and evaluation of its antibacterial and chemocatalytic potential. Synthesis of AgNPs carried out by using aqueous silver nitrate. The UV–Vis absorption spectrum of the synthesized AgNPs showed a broad absorption peak at 470 nm. TEM analysis shows the morphology of AgNPs as a hexagonal matrix with average particle size is about 50 nm. XRD analysis displays the crystalline structure of AgNPs. The presence of elemental silver was confirmed with EDX analysis. FTIR analysis shows that amide groups present in proteins are dominant reducing agents and play an important role in the bioreduction of Ag+ ions to Ag0. The bioreduced AgNPs demonstrated significant catalytic properties in a reduction reaction of 4-nitrophenol to 4-aminophenol using NaBH4 in an aqueous condition. The biosynthesized AgNPs have potent antibacterial activity against common clinical pathogens. Considering the remarkable antibacterial activity against common pathogenic microorganisms, AgNPs can be used in the pharmaceutical industries.


2020 ◽  
Vol 10 (6) ◽  
pp. 7257-7264

Metal nanoparticles are gaining importance nowadays in nanoscience. The nanoparticle had better physical and chemical properties compared with solid particles due to their large surface area. The silver nanoparticles are employed mostly in medical and electrical applications having outstanding conductivity and antimicrobial activity. In the present investigation, NaBH4 and ethanol were used as a reductant and stabilizer agent from silver nitrate salt as a precursor. The silver nanoparticles obtained were characterized using Fourier-transform infrared spectroscopy (FT-IR), X-Ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) to determine their morphology and size. In XRD analysis, the average particle size was found to be 18.31 nm. The TEM analysis shows crystalline morphology with a face-centered cubic structure. The antibacterial activity was tested against two bacterial cultures, namely Bacillus subtilis and Pseudomonas aeruginosa. The inhibition zones of 19mm and 17mm were observed against Bacillus subtilis and Pseudomonas aeruginosa, respectively.



Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 473
Author(s):  
Prabu Kumar Seetharaman ◽  
Rajkuberan Chandrasekaran ◽  
Rajiv Periakaruppan ◽  
Sathishkumar Gnanasekar ◽  
Sivaramakrishnan Sivaperumal ◽  
...  

To develop a benign nanomaterial from biogenic sources, we have attempted to formulate and fabricate silver nanoparticles synthesized from the culture filtrate of an endophytic fungus Penicillium oxalicum strain LA-1 (PoAgNPs). The synthesized PoAgNPs were exclusively characterized through UV–vis absorption spectroscopy, Fourier Transform Infra-Red spectroscopy (FT-IR), X-ray powder diffraction (XRD), and Transmission Electron Microscopy (TEM) with energy dispersive X-ray spectroscopy (EDX). The synthesized nanoparticles showed strong absorbance around 430 nm with surface plasmon resonance (SPR) and exhibited a face-centered cubic crystalline nature in XRD analysis. Proteins presented in the culture filtrate acted as reducing, capping, and stabilization agents to form PoAgNPs. TEM analysis revealed the generation of polydispersed spherical PoAgNPs with an average size of 52.26 nm. The PoAgNPs showed excellent antibacterial activity against bacterial pathogens. The PoAgNPs induced a dose-dependent cytotoxic activity against human adenocarcinoma breast cancer cell lines (MDA-MB-231), and apoptotic morphological changes were observed by dual staining. Additionally, PoAgNPs demonstrated better larvicidal activity against the larvae of Culex quinquefasciatus. Moreover, the hemolytic test indicated that the as-synthesized PoAgNPs are a safe and biocompatible nanomaterial with versatile bio-applications.



2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Indrawati Patabang ◽  
Syahruddin Kasim ◽  
Paulina Taba

Silver nanoparticles have been synthesized using kluwak leaf extract (Pangium edule Reinw) as bioreductor and antioxidant activity assay. The nanoparticles formed were monitored by observing UV-Vis absorption and characterized by using FTIR, PSA, XRD and SEM instruments. The result of functional group characterization with FTIR show that the functional groups OH, C = O, C-O and CH2 act as Ag+ reducing agent. The size of silver nanoparticles was determined by using Particle Size Analyzer (PSA) and the result show average particle size distribution of 93.2 nm. Morphology of AgNp were observed by Scanning Electron Microscope (SEM) and X-Ray Difraction (XRD) analysis show result of 51,78 nm. The antioxidant activity was shown by in kluwak leaf extract and silver nanoparticles with IC50 values respectively 831,33 ppm dan 1493,09 ppm.



2019 ◽  
Vol 31 (12) ◽  
pp. 2804-2810
Author(s):  
Anti Kolonial Prodjosantoso ◽  
Oktanio Sigit Prawoko ◽  
Maximus Pranjoto Utomo ◽  
Lis Permana Sari

In this article, the synthesis of silver nanoparticles through a reduction reaction process using Salacca zalacca extract is reported. The AgNPs were characterized using X-ray diffraction, transmission electron microscopy, Fourier transform infrared and UV-visible spectrophotometry methods. The AgNPs antibacterial activity was determined against of Gram-positive bacteria (Staphylococcus epidermidis) and Gram-negative bacteria (Escherichia coli). The main functional groups contained in Salacca zalacca extract are carbonyl, hydroxyl and nitrile groups, which are believed to reduce the silver ions to metal. The surface plasmon resonance values of brownish red AgNPs are in the range of 410 nm to 460 nm. The structure of AgNPs is face centered cubic (FCC). The diameter of silver nanoparticles crystallite is 14.2 ± 2.6 nm. The AgNPs growth inhibition zones of Escherichia coli and Staphylococcus epidermidis are 9.6 mm and 9.2 mm, respectively.



Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2268 ◽  
Author(s):  
Garima Sharma ◽  
Ju-Suk Nam ◽  
Ashish Sharma ◽  
Sang-Soo Lee

Coptidis rhizome contains several alkaloids that are bioactive agents of therapeutic value. We propose an eco-friendly method to synthesize biocompatible silver nanoparticles (AgNPs) using the aqueous extract of Coptidis rhizome. Silver ions were reduced to AgNPs using the aqueous extract of Coptidis rhizome, indicating that Coptidis rhizome can be used for the biosynthesis of AgNPs. The time and the concentration required for conversion of silver ions into AgNPs was optimized using UV-absorbance spectroscopy and inductively coupled plasma spectroscopy (ICP). Biosynthesized AgNPs showed a distinct UV-Visible absorption peak at 420 nm. ICP analysis showed that the time required for the completion of biosynthesis was around 20 min. Microscopic images showed that nanoparticles synthesized were of spherical shape and the average diameter of biosynthesized AgNPs was less than 30 nm. XRD analysis also confirmed the size of AgNps and revealed their crystalline nature. The interaction of AgNPs with phytochemicals present in Coptidis rhizome extract was observed in FTIR analysis. The antimicrobial property of AgNPs was evaluated using turbidity measurements. Coptidis rhizome-mediated biosynthesized AgNPs showed significant anti-bacterial activities against Escherichia coli and Staphylococcus aureus that are commonly involved in various types of infections, indicating their potential as an effective anti-bacterial agent.



2021 ◽  
Author(s):  
CAGLA SARI ◽  
BUKET ARIK

Abstract In this study, sulfated β-cyclodextrin (S-β-CD) which is a β-cyclodextrin derivative was obtained by chemical treatment of natural β-cyclodextrin (β-CD) with sulfuric acid. Afterwards, β-CD and S-β-CD were applied to cotton fabrics. In different treatments, β-CD and S-β-CD were bonded to cotton fabrics with EDTA crosslinking agent. Then, all the fabrics were treated with antibacterial agent silver nanoparticles (AgNPs) and inclusion complexes were formed. The aims of this study were to increase the washing stability and the antibacterial activity against microorganisms and to compare the effects of β-CD complex and derivative complex with silver nanoparticles on treated cotton samples. So, for this purpose, the properties of the treated samples like antibacterial activity, washing stability, add-on, tensile strength, handle, thickness and color change were tested and compared to each other. In addition, characterization analyzes such as SEM, EDX and FT-IR were performed on the samples and XRD analysis was performed to characterize the AgNPs. As a result of the study, it was observed that AgNPs alone were not sufficient to obtain antibacterial textiles with strong antibacterial effect and good washing stability. The inclusion complexes formed with β-CD and S-β-CD had much more effective antibacterial activity and more robust washing stability. In addition, when the physical properties except stiffness and yellowness were considered besides antibacterial activity and washing stability, the treatment of derivative β-CD complex with AgNPs and crosslinking this complex to cotton sample by means of EDTA was found to be the most favorable method.



2021 ◽  
Author(s):  
Susmila Aparna Gaddam ◽  
Venkata Subbaiah Kotakadi ◽  
Gunasekhar. Kalavakunta ◽  
Josthna Penchalaneni ◽  
Varadarajulu Naidu Challagundla ◽  
...  

Abstract The current investigation highlights the green synthesis of silver nanoparticles (AgNPs) by the insectivorous plant Drosera spatulata Labill var.bakoensis, which is the first of its kind. The biosynthesized nanoparticles revealed a UV visible surface plasmon resonance (SPR) band at 427 nm. The natural phytoconstituents which reduce the monovalent silver were identified by FTIR. The particle size of the Ds-AgNPs was detected by the Nanoparticle size analyzer confirms that the average size of nanoparticles was around 23 ± 2 nm. Ds-AgNPs exhibit high stability because of their high negative zeta potential (-34.1 mV). AFM studies also revealed that the Ds-AgNPs were spherical in shape and average size ranges from 10 to 20 ± 5 nm. TEM analysis also revealed that the average size of Ds-AgNPs was also around 21 ± 4 nm and the shape is roughly spherical and well dispersed. The crystal nature of Ds-AgNPs was detected as a face-centered cube by the XRD analysis. Furthermore, studies on antibacterial and antifungal activities manifested outstanding antimicrobial activities of Ds-AgNPs compared with standard antibiotic Amoxyclav. In addition, demonstration of superior free radical scavenging efficacy coupled with potential in vitro cytotoxic significance on Human colon cancer cell lines (HT-29) suggests that the Ds-AgNPs attain excellent multifunctional therapeutic applications.



2020 ◽  
Vol 10 (19) ◽  
pp. 6973
Author(s):  
Hidayat Mohd Yusof ◽  
Nor’Aini Abdul Rahman ◽  
Rosfarizan Mohamad ◽  
Uswatun Hasanah Zaidan

The present study aimed to investigate the ability of Lactobacillus plantarum TA4 in tolerating Ag+ and its ability to produce silver nanoparticles (AgNPs). The biosynthesized AgNPs were characterized using UV–Visible spectroscopy (UV–Vis), dynamic light scattering (DLS), Fourier-transform infrared (FTIR), and high-resolution transmission electron microscope (HR-TEM). The cell biomass of L. plantarum TA4 demonstrated the ability to tolerate Ag+ at a concentration of 2 mM, followed by the formation of AgNPs. This was confirmed by the visual observation of color changes and a presence of maximum UV–Vis absorption centered at 429 nm. HR-TEM analysis revealed that the AgNPs were spherical with an average size of 14.0 ± 4.7 nm, while the SEM-EDX analysis detected that the particles were primarily located on the cell membrane of L. plantarum TA4. Further, DLS analysis revealed that the polydispersity index (PDI) value of biosynthesized AgNPs was 0.193, implying the monodispersed characteristic of NPs. Meanwhile, the FTIR study confirmed the involvement of functional groups from the cell biomass that involved in the reduction process. Moreover, biosynthesized AgNPs exhibited antibacterial activity against Gram-positive and Gram-negative pathogens in a concentration-dependent manner. Furthermore, the antioxidant property of biosynthesized AgNPs that was evaluated using the DPPH assay showed considerable antioxidant potential. Results from this study provide a sustainable and inexpensive method for the production of AgNPs.



Author(s):  
Sharmila C ◽  
Ranjith Kumar R ◽  
Chandar Shekar B

 Objective: Synthesis of silver nanoparticles (AgNPs) using a simple, cost-effective and environmentally friendly green route approach and to study the antibacterial activity of AgNPs against human pathogens.Methods: Green route approach is used to synthesize AgNPs using Psidium guajava leaf extract. Fourier transform infrared (FTIR) was used to identify the presence of the functional group. X-ray diffraction (XRD) was used to analyze the structure of prepared AgNPs. Energy dispersive X-ray was used to the characteristic to the composition of the prepared nanoparticles. Size and morphology of the prepared AgNPs were investigated using field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) analysis. Antibacterials efficiency of prepared AgNPs was tested against Escherichia coli and Staphylococcus aureus by well diffusion methods.Results: FTIR study shows the presence of different functional groups present in the leaves mediated AgNPs. The XRD studies yield diffraction peaks corresponding to face-centered cubic structure of Ag crystals. Spherical shaped AgNPs with a particle size of about ~55 nm were evidenced using FESEM and TEM analysis. Energy dispersive spectrum of the synthesized AgNPs confirms the presence of silver in the prepared nanoparticles. From UV-VIS analysis it is shown that the absorption band was red-shifted from 430 nm to 456 nm. The prepared AgNPs shows good antibacterial activity against E. coli and S. aureus.Conclusions: P. guajava leaf extract is a potential reducing agent to synthesize AgNPs. The green synthesis approach provides cost-effective and eco-friendly nanoparticles, which could be used in biomedical applications.



2014 ◽  
Vol 938 ◽  
pp. 236-241 ◽  
Author(s):  
Pallavee Srivastava ◽  
Judith Braganca ◽  
Sutapa Roy Ramanan ◽  
Meenal Kowshik

Nanobiotechnology is a multidisciplinary branch of nanotechnology which includes fabrication of nanosized materials using biological approaches. Highly structured metallic and metal sulfide nanoparticles have been reported to be synthesized by numerous bacteria, fungi, yeasts and viruses. However, biosynthesis of nanoparticles by Haloarchaea (salt-loving archaea) of the third domain of life, Archaea, is in its nascent stages. In this study, we report the intracellular synthesis of stable, mostly spherical silver nanoparticles (SNPs) by the haloarchaeal isolateHalococcus salifodinaeBK6. The isolate adapted to silver nitrate was found to exhibit growth kinetics similar to that of cells unexposed to silver nitrate. The nitrate reductase enzyme assay and the enzyme inhibitor studies showed the involvement of NADH dependent nitrate reductase in silver tolerance, reduction, and synthesis of SNPs. UV visible spectroscopy, XRD, TEM and EDAX were used for characterization of SNPs. The XRD exhibited characteristic Bragg peaks of face centered cubic silver with crystallite domain size of 26 nm and 12 nm for SNPs synthesized in NTYE and halophilic nitrate broth, respectively. TEM analysis exhibited an average particle size of 50.3 nm and 12 nm for SNPs synthesized in NTYE and halophilic nitrate broth (HNB), respectively. The as synthesized SNPs exhibited antimicrobial activity against both Gram positive and Gram negative organisms.



Sign in / Sign up

Export Citation Format

Share Document