scholarly journals ZC3H4 restricts non-coding transcription in human cells

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Chris Estell ◽  
Lee Davidson ◽  
Pieter C Steketee ◽  
Adam Monier ◽  
Steven West

The human genome encodes thousands of non-coding RNAs. Many of these terminate early and are then rapidly degraded, but how their transcription is restricted is poorly understood. In a screen for protein-coding gene transcriptional termination factors, we identified ZC3H4. Its depletion causes upregulation and extension of hundreds of unstable transcripts, particularly antisense RNAs and those transcribed from so-called super-enhancers. These loci are occupied by ZC3H4, suggesting that it directly functions in their transcription. Consistently, engineered tethering of ZC3H4 to reporter RNA promotes its degradation by the exosome. ZC3H4 is predominantly metazoan - interesting when considering its impact on enhancer RNAs that are less prominent in single-celled organisms. Finally, ZC3H4 loss causes a substantial reduction in cell proliferation, highlighting its overall importance. In summary, we identify ZC3H4 as playing an important role in restricting non-coding transcription in multi-cellular organisms.

Author(s):  
Chris Estell ◽  
Lee Davidson ◽  
Pieter C. Steketee ◽  
Adam Monier ◽  
Steven West

SUMMARYThe human genome encodes thousands of non-coding RNAs. Many of these terminate early and are then rapidly degraded, but how their transcription is restricted is poorly understood. In a screen for protein-coding gene termination factors, we identified ZC3H4. However, its depletion causes upregulation and extension of hundreds of unstable transcripts, particularly antisense RNAs and those transcribed from so-called super-enhancers. These loci are occupied by ZC3H4, suggesting that it directly functions in their transcription. Consistently, engineered tethering of ZC3H4 to reporter RNA promotes its degradation by the exosome. ZC3H4 is metazoan-specific - interesting when considering its impact on enhancer RNAs that are less prominent in single-celled organisms. Finally, ZC3H4 loss causes a substantial reduction in cell proliferation, highlighting its overall importance. In summary, we identify ZC3H4 as a factor that plays an important role in restricting non-coding transcription in multi-cellular organisms.


2021 ◽  
Vol 12 ◽  
Author(s):  
Erica L. Kleinbrink ◽  
Nardhy Gomez-Lopez ◽  
Donghong Ju ◽  
Bogdan Done ◽  
Anton-Scott Goustin ◽  
...  

In the post-genomic era, our understanding of the molecular regulators of physiologic and pathologic processes in pregnancy is expanding at the whole-genome level. Longitudinal changes in the known protein-coding transcriptome during normal pregnancy, which we recently reported (Gomez-Lopez et al., 2019), have improved our definition of the major operant networks, yet pregnancy-related functions of the non-coding RNA transcriptome remain poorly understood. A key finding of the ENCODE (Encyclopedia of DNA Elements) Consortium, the successor of the Human Genome Project, was that the human genome contains approximately 60,000 genes, the majority of which do not encode proteins. The total transcriptional output of non-protein-coding RNA genes, collectively referred to as the non-coding transcriptome, is comprised mainly of long non-coding RNA (lncRNA) transcripts (Derrien et al., 2012). Although the ncRNA transcriptome eclipses its protein-coding counterpart in abundance, it has until recently lacked a comprehensive, unbiased, genome-scale characterization over the timecourse of normal human pregnancy. Here, we annotated, characterized, and selectively validated the longitudinal changes in the non-coding transcriptome of maternal whole blood during normal pregnancy to term. We identified nine long non-coding RNAs (lncRNAs), including long intergenic non-coding RNAs (lincRNAs) as well as lncRNAs antisense to or otherwise in the immediate vicinity of protein-coding genes, that were differentially expressed with advancing gestation in normal pregnancy: AL355711, BC039551 (expressed mainly in the placenta), JHDM1D-AS1, A2M-AS1, MANEA-AS1, NR_034004, LINC00649, LINC00861, and LINC01094. By cross-referencing our dataset against major public pseudogene catalogs, we also identified six transcribed pseudogenes that were differentially expressed over time during normal pregnancy in maternal blood: UBBP4, FOXO3B, two Makorin (MKRN) pseudogenes (MKRN9P and LOC441455), PSME2P2, and YBX3P1. We also identified three non-coding RNAs belonging to other classes that were modulated during gestation: the microRNA MIR4439, the small nucleolar RNA (snoRNA) SNORD41, and the small Cajal-body specific ncRNA SCARNA2. The expression profiles of most hits were broadly suggestive of functions in pregnancy. These time-dependent changes of the non-coding transcriptome during normal pregnancy, which may confer specific regulatory impacts on their protein-coding gene targets, will facilitate a deeper molecular understanding of pregnancy and lncRNA-mediated molecular pathways at the maternal-fetal interface and of how these pathways impact maternal and fetal health.


2018 ◽  
Author(s):  
Venkata Narasimha Kadali

Long Non-Coding RNAs (lncRNAs) attaining impeccable attention in recent times owing to their expanded roles in the cell. They essentially perform a decisive task to regulate the genes in conjunction with developmental processes. In cancers the lncRNAs involves in the cell proliferation, migration and invasion made them as “key Orchestrators”. In this precise opinion, we brief the role of lncRNAs in cancer with a note on their protein coding potential.


2020 ◽  
Vol 40 (5) ◽  
Author(s):  
Man Huang ◽  
Jiajia Zheng ◽  
Yongya Ren ◽  
Jingjing Zhu ◽  
Linbing Kou ◽  
...  

Abstract As the most common malignant disease in childhood, children acute lymphoblastic leukemia (ALL) is a heterogeneous disease caused by the accumulated genetic alterations. Long non-coding RNAs (lncRNAs) are reported as critical regulators in diseases. GEPIA database indicated that long intergenic non-protein coding RNA 221 (LINC00221) was conspicuously down-regulated in acute myeloid leukemia. However, its expression pattern in ALL has not been revealed. This work was carried out to study the role of LINC00221 in ALL cells. Quantitative real-time PCR (qRT-PCR) quantified LINC00221 expression in ALL cells. The function of LINC00221 in ALL was determined by ki-67 immunofluorescence staining, EdU, TUNEL, JC-1, and caspase-3/8/9 activity assays. RNA pull down and Ago2-RNA immunoprecipitation (RIP) assays investigated the interaction between miR-152-3p and LINC00221 or ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 2 (ATP2A2). Our study revealed the low expression of LINC00221 in ALL cells. Subsequently, LINC00221 was verified to bind with miR-152-3p. Moreover, functional assays pointed out that LINC00221 overexpression posed anti-proliferation and pro-apoptosis effects in ALL cells, and these effects could be separately reversed by miR-152-3p up-regulation. Afterward, LINC00221 was revealed to regulate ATP2A2 expression via sponging miR-152-3p. Additionally, ATP2A2 was verified to involve in regulating LINC00221-mediated ALL cell proliferation and apoptosis. In conclusion, LINC00221 suppressed ALL cell proliferation and boosted ALL cell apoptosis via sponging miR-152-3p to up-regulate ATP2A2.


2016 ◽  
Vol 44 (4) ◽  
pp. 1073-1078 ◽  
Author(s):  
Rogerio Alves de Almeida ◽  
Marcin G. Fraczek ◽  
Steven Parker ◽  
Daniela Delneri ◽  
Raymond T. O'Keefe

Many human diseases have been attributed to mutation in the protein coding regions of the human genome. The protein coding portion of the human genome, however, is very small compared with the non-coding portion of the genome. As such, there are a disproportionate number of diseases attributed to the coding compared with the non-coding portion of the genome. It is now clear that the non-coding portion of the genome produces many functional non-coding RNAs and these RNAs are slowly being linked to human diseases. Here we discuss examples where mutation in classical non-coding RNAs have been attributed to human disease and identify the future potential for the non-coding portion of the genome in disease biology.


2013 ◽  
Vol 4 (4) ◽  
pp. 411-415 ◽  
Author(s):  
Nadia Vadaie ◽  
Kevin V. Morris

AbstractShortly after the completion of the human genome project in 2003, the Encode project was launched. The project was set out to identify the functional elements in the human genome, and unexpectedly it was found that >80% of the genome is transcribed. The Encode project identified those transcribed regions of the genome to be encoded by non-coding RNAs (ncRNAs). With only 2% of the genome carrying gene-encoding proteins, the conundrum was then, what is the function, if any, of these non-coding regions of the genome? These ncRNAs included both short and long RNAs. The focus of this review will be on antisense long non-coding RNAs (lncRNAs), as these transcripts have been observed to play a role in gene expression of protein-coding genes. Some lncRNAs have been found to regulate protein-coding gene transcription at the epigenetic level, whereby they suppress transcription through the recruitment of protein complexes to target loci in the genome. Conversely, there are lncRNAs that have a positive role in gene expression with less known about mechanism, and some lncRNAs have been shown to be involved in post-transcriptional processes. Additionally, lncRNAs have been observed to regulate their own expression in a positive feedback loop by functioning as a decoy. The biological significance of lncRNAs is only just now becoming evident, with many lncRNAs found to play a significant role in several human diseases.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Swapna Vidhur Daulatabad ◽  
Rajneesh Srivastava ◽  
Sarath Chandra Janga

Abstract Background With advancements in omics technologies, the range of biological processes where long non-coding RNAs (lncRNAs) are involved, is expanding extensively, thereby generating the need to develop lncRNA annotation resources. Although, there are a plethora of resources for annotating genes, despite the extensive corpus of lncRNA literature, the available resources with lncRNA ontology annotations are rare. Results We present a lncRNA annotation extractor and repository (Lantern), developed using PubMed’s abstract retrieval engine and NCBO’s recommender annotation system. Lantern’s annotations were benchmarked against lncRNAdb’s manually curated free text. Benchmarking analysis suggested that Lantern has a recall of 0.62 against lncRNAdb for 182 lncRNAs and precision of 0.8. Additionally, we also annotated lncRNAs with multiple omics annotations, including predicted cis-regulatory TFs, interactions with RBPs, tissue-specific expression profiles, protein co-expression networks, coding potential, sub-cellular localization, and SNPs for ~ 11,000 lncRNAs in the human genome, providing a one-stop dynamic visualization platform. Conclusions Lantern integrates a novel, accurate semi-automatic ontology annotation engine derived annotations combined with a variety of multi-omics annotations for lncRNAs, to provide a central web resource for dissecting the functional dynamics of long non-coding RNAs and to facilitate future hypothesis-driven experiments. The annotation pipeline and a web resource with current annotations for human lncRNAs are freely available on sysbio.lab.iupui.edu/lantern.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Garima Bhatia ◽  
Santosh K. Upadhyay ◽  
Anuradha Upadhyay ◽  
Kashmir Singh

Abstract Background Long non-coding RNAs (lncRNAs) are regulatory transcripts of length > 200 nt. Owing to the rapidly progressing RNA-sequencing technologies, lncRNAs are emerging as considerable nodes in the plant antifungal defense networks. Therefore, we investigated their role in Vitis vinifera (grapevine) in response to obligate biotrophic fungal phytopathogens, Erysiphe necator (powdery mildew, PM) and Plasmopara viticola (downy mildew, DM), which impose huge agro-economic burden on grape-growers worldwide. Results Using computational approach based on RNA-seq data, 71 PM- and 83 DM-responsive V. vinifera lncRNAs were identified and comprehensively examined for their putative functional roles in plant defense response. V. vinifera protein coding sequences (CDS) were also profiled based on expression levels, and 1037 PM-responsive and 670 DM-responsive CDS were identified. Next, co-expression analysis-based functional annotation revealed their association with gene ontology (GO) terms for ‘response to stress’, ‘response to biotic stimulus’, ‘immune system process’, etc. Further investigation based on analysis of domains, enzyme classification, pathways enrichment, transcription factors (TFs), interactions with microRNAs (miRNAs), and real-time quantitative PCR of lncRNAs and co-expressing CDS pairs suggested their involvement in modulation of basal and specific defense responses such as: Ca2+-dependent signaling, cell wall reinforcement, reactive oxygen species metabolism, pathogenesis related proteins accumulation, phytohormonal signal transduction, and secondary metabolism. Conclusions Overall, the identified lncRNAs provide insights into the underlying intricacy of grapevine transcriptional reprogramming/post-transcriptional regulation to delay or seize the living cell-dependent pathogen growth. Therefore, in addition to defense-responsive genes such as TFs, the identified lncRNAs can be further examined and leveraged to candidates for biotechnological improvement/breeding to enhance fungal stress resistance in this susceptible fruit crop of economic and nutritional importance.


2021 ◽  
pp. 1-11
Author(s):  
Min Wei ◽  
Youguo Chen ◽  
Wensheng Du

BACKGROUND: Cervical cancer (CC) is the most common form of gynecological malignancy. Long intergenic non-protein coding RNA 858 (LINC00858) has been identified to participate in multiple cancers. However, the role and mechanism of LINC00858 in CC cells are still elusive. AIM: The aim of this study is to explore the biological functions and mechanisms of LINC00858 in CC cells. METHODS: RT-qPCR analysis was used to examine the expression of LINC00858 in CC cells. EdU and colony formation assay were utilized to assess cell proliferation. TUNEL assay and flow cytometry assay were conducted to assess cell apoptosis. The mechanism regarding LINC00858 was certified through RNA pull down, RIP and luciferase reporter assays. RESULTS: The up-regulated LINC00858 was detected in CC cells. Reduction of LINC00858 effectively subdued CC cells proliferation and stimulated cell apoptosis. LINC00858 was determined to bind with miR-3064-5p and up-regulate VMA21 in CC cells. In rescue assays, miR-3064-5p down-regulation and VMA21 up-regulation were able to counteract the effect caused by LINC00858 decrease on CC cell proliferation and apoptosis. CONCLUSION: LINC00858 enhances cell proliferation, while restraining cell apoptosis in CC through targeting miR-3064-5p/VMA21 axis, implying that LINC00858 may serve as a promising therapeutic target for CC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ye Qian ◽  
Yan Zhang ◽  
Haoming Ji ◽  
Yucheng Shen ◽  
Liangfeng Zheng ◽  
...  

Abstract Background Lung adenocarcinoma (LUAD) is one of the most common cancers with high morbidity and mortality worldwide. Long non-coding RNAs (lncRNAs) serve as tumor promoters or suppressors in the development of various human malignancies, including LUAD. Although long intergenic non-protein coding RNA 1089 (LINC01089) suppresses the progression of breast cancer, its mechanism in LUAD requires further exploration. Thus, we aimed to investigate the underlying function and mechanism of LINC01089 in LUAD. Methods The expression of LINC01089 in LUAD and normal cell lines was detected. Functional assays were applied to measure cell proliferation, apoptosis and migration. Besides, mechanism experiments were employed for assessing the interplay among LINC01089, miR-301b-3p and StAR related lipid transfer domain containing 13 (STARD13). Data achieved in this study was statistically analyzed with Student’s t test or one-way analysis of variance. Results LINC01089 expression was significantly down-regulated in LUAD tissues and cells and its overexpression could reduce cell proliferation and migration. Moreover, LINC01089 could regulate STARD13 expression through competitively binding to miR-301b-3p in LUAD. Additionally, rescue assays uncovered that STARD13 depletion or miR-301b-3p overexpression could countervail the restraining effect of LINC01089 knockdown on the phenotypes of LUAD cells. Conclusion LINC01089 served as a tumor-inhibitor in LUAD by targeting miR-301b-3p/STARD13 axis, providing an innovative insight into LUAD therapies. Trial registration Not applicable.


Sign in / Sign up

Export Citation Format

Share Document