scholarly journals ATR-FTIR, EDS and SEM evaluations of enamel structure after treatment with hydrogen peroxide bleaching agents loaded with nano-hydroxyapatite particles

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10606
Author(s):  
Giulia Orilisi ◽  
Vincenzo Tosco ◽  
Riccardo Monterubbianesi ◽  
Valentina Notarstefano ◽  
Mutlu Özcan ◽  
...  

Background Tooth whitening is one of the most requested dental treatments, but it still presents some side effects. Indeed, the bleaching agent can generate patients’ discomfort and dental hard tissue damages, not achieving an efficient and long-lasting treatment with optimum whitening effect. To overcome these limitations, the bleaching agents containing nano-hydroxyapatite can represent a reliable solution to avoid these detrimental effects. Methods In this study, human third molars were treated with commercial bleaching agents, containing nano-hydroxyapatite (nHA) and 6% (at-home treatment), 12% and 18% (in-office treatments) of hydrogen peroxide (HP), named respectively G1, G2 and G3. The results were evaluated descriptively and analytically using Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray spectroscopy (EDS), comparing the treated groups with a commercial gel containing 10% carbamide peroxide (CONV) and with a non-treated control group (CTRL). Results ATR-FTIR analysis revealed a similar composition in carbonates and phosphates for CTRL, G1 and G2 groups, which showed no significant differences in their spectral profiles; an increased amount of organic matter was found in G3, while CONV displayed an intermediate behavior. SEM analysis did not highlight significant changes in the enamel microstructure of G1 and CONV when compared to CTRL; the pattern observed in G2 presented a slight increase of enamel irregularities, while G3 displayed a partial removal of the aprismatic layer and microporosities. No evident effects due to nHA were observed in the structure of the hydroxyapatite component of G1, G2 and CONV, if compared to CTRL, while G3 showed a slight loss of crystallinity. In all groups, EDS identified slight changes in the concentration of chemical elements O and Ca, while the Ca/P ratio was similar when compared to CTRL. Conclusion The obtained results suggest that the application of the tested commercial bleaching agents, with a concentration of HP up to 12%, does not alter the morphological and chemical composition of the enamel surface and maintains its crystallinity.

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3072
Author(s):  
Riccardo Monterubbianesi ◽  
Vincenzo Tosco ◽  
Tiziano Bellezze ◽  
Giampaolo Giuliani ◽  
Mutlu Özcan ◽  
...  

This study aimed to evaluate two hydrogen peroxide (HP)-based at-home bleaching systems in order to analyze whether nano-hydroxyapatite (nHA) addition may represent a reliable and safe solution for tooth whitening without altering dental microstructure and hardness. Human third molars (N = 15) were treated with two bleaching agents, one containing 6%HP (6HP) and the other 6% HP nHA-enriched (6HP-nHA) with average particle diameter ranging from 5–20 nm. Their effects on enamel were assessed using a spectrophotometer, Vickers microhardness (VMH) test and Scanning Electron Microscopy (SEM), comparing the treated groups with the non-treated control group (CTR). Color analysis revealed improvement in whiteness in both groups compared to CTR. VMH test results showed no differences among the groups. SEM analysis highlighted no evident changes in the enamel microstructure of tested groups compared to CTR. At high magnification, in 6HP group, a slight increase in irregularities of enamel surface morphology was observed, while 6HP-nHA group displayed removal of the aprismatic layer but preservation of the intact prismatic structure. These results suggest that the 6HP-nHA agent may be recommended to provide reliable whitening treatment, without damaging the enamel micromorphology and hardness.


2012 ◽  
Vol 37 (5) ◽  
pp. 526-531 ◽  
Author(s):  
CRG Torres ◽  
CF Ribeiro ◽  
E Bresciani ◽  
AB Borges

SUMMARY The aim of the present study was to evaluate the effect of 20% and 35% hydrogen peroxide bleaching gels on the color, opacity, and fluorescence of composite resins. Seven composite resin brands were tested and 30 specimens, 3-mm in diameter and 2-mm thick, of each material were fabricated, for a total of 210 specimens. The specimens of each tested material were divided into three subgroups (n=10) according to the bleaching therapy tested: 20% hydrogen peroxide gel, 35% hydroxide peroxide gel, and the control group. The baseline color, opacity, and fluorescence were assessed by spectrophotometry. Four 30-minute bleaching gel applications, two hours in total, were performed. The control group did not receive bleaching treatment and was stored in deionized water. Final assessments were performed, and data were analyzed by two-way analysis of variance and Tukey tests (p<0.05). Color changes were significant for different tested bleaching therapies (p<0.0001), with the greatest color change observed for 35% hydrogen peroxide gel. No difference in opacity was detected for all analyzed parameters. Fluorescence changes were influenced by composite resin brand (p<0.0001) and bleaching therapy (p=0.0016) used. No significant differences in fluorescence between different bleaching gel concentrations were detected by Tukey test. The greatest fluorescence alteration was detected on the brand Z350. It was concluded that 35% hydrogen peroxide bleaching gel generated the greatest color change among all evaluated materials. No statistical opacity changes were detected for all tested variables, and significant fluorescence changes were dependent on the material and bleaching therapy, regardless of the gel concentration.


2009 ◽  
Vol 20 (4) ◽  
pp. 267-274 ◽  
Author(s):  
Cármen Regina Coldebella ◽  
Ana Paula Dias Ribeiro ◽  
Nancy Tomoko Sacono ◽  
Flávia Zardo Trindade ◽  
Josimeri Hebling ◽  
...  

The aim of this study was to evaluate the trans-enamel and trans-dentinal effects of a 35% hydrogen peroxide (H2O2) bleaching gel on odontoblast-like cells. Enamel/dentin discs obtained from bovine incisors were mounted in artificial pulp chambers (APCs). Three groups were formed: G1- 35% H2O2; G2- 35% H2O2 + halogen light application; G3- control. The treatments were repeated 5 times and the APCs were incubated for 12 h. Then, the extract was collected and applied for 24 h on the cells. Cell metabolism, total protein dosage and cell morphology were evaluated. Cell metabolism decreased by 62.09% and 61.83% in G1 and G2, respectively. The depression of cell metabolism was statistically significant when G1 and G2 were compared to G3. Total protein dosage decreased by 93.13% and 91.80% in G1 and G2, respectively. The cells in G1 and G2 exhibited significant morphological alterations after contact with the extracts. Regardless of halogen light application, the extracts caused significantly more intense cytopathic effects compared to the control group. After 5 consecutive applications of a 35% H2O2 bleaching agent, either catalyzed or not by halogen light, products of gel degradation were capable to diffuse through enamel and dentin causing toxic effects to the cells.


2011 ◽  
Vol 36 (5) ◽  
pp. 554-562 ◽  
Author(s):  
B Xu ◽  
Q Li ◽  
Y Wang

SUMMARY This study investigated the influence of pH values of bleaching agents on the properties of the enamel surface. Sixty freshly extracted premolars were embedded in epoxy resin and mesiodistally sectioned through the buccal aspect into two parts. The sectioned slabs were distributed among six groups (n=10) and treated using different solutions. Group HCl was treated with HCl solution (pH=3.0) and served as a positive control. Group DW, stored in distilled water (pH=7.0), served as a negative control. Four treatment groups were treated using 30% hydrogen peroxide solutions with different pH values: group HP3 (pH=3.0), group HP5 (pH=5.0), group HP7 (pH=7.0), and group HP8 (pH=8.0). The buccal slabs were subjected to spectrophotometric evaluations. Scanning electron microscopy investigation and Micro-Raman spectroscopy were used to evaluate enamel surface morphological and chemical composition alterations. pH value has a significant influence on the color changes after bleaching (p<0.001). Tukey's multiple comparisons revealed that the order of color changes was HP8, HP7>HP5, HP3>HCl>DW. No obvious morphological alterations were detected on the enamel surface in groups DW, HP7, and HP8. The enamel surface of groups HCl and HP3 showed significant alterations with an erosion appearance. No obvious chemical composition changes were detected with respect to Micro-Raman analysis. Within the limitations of this study, it was concluded that no obvious morphological or chemical composition alterations of enamel surface were detected in the neutral or alkaline bleaching solutions. Bleaching solutions with lower pH values could result in more significant erosion of enamel, which represented a slight whitening effect.


2016 ◽  
Vol 41 (3) ◽  
pp. 293-304 ◽  
Author(s):  
DG Soares ◽  
N Marcomini ◽  
FG Basso ◽  
TN Pansani ◽  
J Hebling ◽  
...  

SUMMARY Objectives: The tooth/restoration interface may act as a pathway for hydrogen peroxide (H2O2) diffusion into the pulp chamber. Therefore, the influence of resin-modified glass ionomer cement (RMGIC) and resin composite simulated restorations on the cytotoxicity of an in-office bleaching gel was assessed in vitro. Materials and Methods: Cavities in enamel/dentin discs restored with RMGIC Vitremer (3M ESPE) or Single Bond/Filtek Z350 (3M ESPE) resin composite (RC) were subjected or not subjected to hydrolytic degradation (HD). A 35%-H2O2 bleaching gel was applied to simulated restored and nonrestored enamel surfaces, and culture medium in contact with the dentin substrate (extract) was collected and applied to MDPC-23 cells. Nonrestored discs subjected or not subjected to bleaching were used as positive and negative controls, respectively. Cell viability, oxidative stress, interleukin (IL)-1β expression, alkaline phosphatase (ALP) activity, and mineralized nodule deposition were evaluated. The H2O2 in the extracts was quantified. Data were subjected to statistical analysis. Results: Higher oxidative stress associated with reduced cell viability, ALP activity, and mineralized nodule deposition was observed for all bleached groups compared with the negative control group. The RMGIC/HD group, which presented the highest H2O2 diffusion, had the lowest values of cell viability, ALP activity, and mineralized nodule deposition, as well as significantly increased IL-1β expression. Conclusions: Dental cavities restored with the RMGIC subjected to hydrolytic degradation allowed for more intense diffusion of H2O2 into the pulp chamber, intensifying the toxicity of a 35%-H2O2 bleaching gel to pulp cells.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 1762
Author(s):  
Silvia Sabry Tawfik ◽  
Mohamed Adel Ezzat Khairy ◽  
Maha Abd Elsalam ElBaz ◽  
Maha Ebrahim Mohamed El korashy

Background: Dental bleaching has become one of the most demanded aesthetic procedures as it is very simple and gives fast results that satisfy the patient’s wishes. However, unfortunately, it has the annoying side effect of tooth sensitivity. This clinical trial was designed to evaluate the efficacy of using a desensitizing agent, which was applied during in-office bleaching with 30% HP (hydrogen peroxide). Methods: 36 participants were divided into four groups (N = 9). According to the intended intervention as follows: Group I:—Application of Relief ®Amorphous Calcium Phosphate (ACP) before in-office bleaching; Group II—Application of Relief ®ACP before and after in-office bleaching; Group III—Application of Relief ®ACP after in-office bleaching; and Group IV: placebo was applied before and after in-office bleaching.  Then, three hydrogen peroxide bleaching applications for a total of 45 minutes were performed. The primary outcome variable was hypersensitivity, assessed with (VAS) scale immediately and 24h, 1 week and 1 month after the procedure; while the secondary outcome was teeth shade assessed using the VITAPAN ® classical shade guide. Results: Statistical analysis was done using Kolmogorov-Smirnov, Shapiro-Wilk tests, Kruskal-Wallis test and Dunn’s test. Immediately after bleaching, there was statistically significant distinction in the median pain score between the groups. After 1 day, the ACP gel before and after bleaching group showed the lowest median score, while, the control group confirmed the highest median score. After 2 days, no statistically sizable difference was observed between all groups. The group receiving ACP gel before and after showed the highest change in median of classical shade guide scores while, (ACP gel after) and control group; showed the lowest change. Conclusion: The application of the desensitizing agent prior to and after in–office bleaching was successful in lowering post-bleaching hypersensitivity. Trail Registration: Clinical trial.gov NCT02942082 21/10/2016


2013 ◽  
Vol 07 (01) ◽  
pp. 055-060 ◽  
Author(s):  
Mehmet Akin ◽  
Sertac Aksakalli ◽  
Faruk Ayhan Basciftci ◽  
Abdullah Demir

ABSTRACTObjective: The purpose of this study was to determine the effect of 10% carbamide peroxide and 38% hydrogen peroxide bleaching agents on the shear bond strength of orthodontic brackets using self-etching primer systems.Methods: Forty five freshly extracted human premolar teeth were randomly divided into 3 groups of 15 teeth each: control (group 1), 10% carbamide peroxide at-home bleached (group 2), and 38% hydrogen peroxide in-office bleached (group 3). Three weeks later, all brackets were bonded using a self-etching primer system. The shear bond strength of these brackets was measured and recorded in MPa. Adhesive remnant index (ARI) scores were determined after the brackets failed. Data were analyzed using Kruskal- Wallis test, pairwise comparisons were made using the Mann-Whitney U test and ARI scores were analyzed using a chi-square test at a significance level of P<.05.Results: The shear bond strengths of group 1 (mean: 17.7 ± 9.7 MPa) were significantly higher (P<.05) than those of group 3 (mean: 9.9 ± 5.4 MPa). No significant differences were found between group 2 (mean: 12.3 ± 4.7) and either group 1 or group 3 (P>.05). ARI scores did not differ significantly among the 3 groups.Conclusions: The use of 10% carbamide peroxide bleaching does not significantly reduce shear bond strength values. In contrast, use of 38% hydrogen peroxide bleaching significantly reduces these values. (Eur J Dent 2013;7:55-60)


2015 ◽  
Vol 09 (02) ◽  
pp. 246-250 ◽  
Author(s):  
Adriana Oliveira Carvalho ◽  
Ana Paula Almeida Ayres ◽  
Letícia Cunha Amaral Gonzaga de Almeida ◽  
André Luiz Fraga Briso ◽  
Frederick Allen Rueggeberg ◽  
...  

ABSTRACT Objective: This study evaluated the effects of carbamide peroxide and hydrogen peroxide on the biaxial flexural strength and flexural modulus of bovine dentin. Materials and Methods: Thirty coronal dentin disks (0.5 mm thick × 6.0 mm diameter) were prepared from bovine teeth. The disks were randomly divided into three groups (n=10): A control group (unbleached), a group bleached with 10% carbamide peroxide (8 h at 37°C), and a group bleached with 38% hydrogen peroxide (three 10 min applications at 37°C). The specimens were tested in a biaxial flexural apparatus held in a universal testing machine at 1.27 mm/min until failure occurred, and the biaxial mechanical properties were calculated. For each test parameter, the data were statistically analyzed by Fisher's PLSD test (predetermined ⍺ = 0.05). Results: The group bleached with 38% hydrogen peroxide demonstrated significantly lower flexural strength than the unbleached control group. Hydrogen peroxide treatment resulted in a significantly lower flexural modulus compared with the control group and with carbamide peroxide bleaching. Conclusion: Exposure of dentin to hydrogen peroxide significantly reduced both the flexural strength and the flexural modulus compared with the no-treatment control, whereas exposure to carbamide peroxide did not significantly affect either parameter.


2019 ◽  
Vol S (1) ◽  
pp. 19-23
Author(s):  
Ma’an M. Nayif ◽  
◽  
Nadia H. Hasan ◽  
Amer A. Taqa ◽  
◽  
...  

Objectives: The aim of this study was to evaluate chemical and topographical changes in the intaglio zirconia surface induced by chemical conditioning solutions using FTIR and SEM analysis. Material and method: twelve plates for each FTIR and SEM tests from each zirconia materials (UPCERA HT White, BruxZir® Solid Zirconia, and Copran® Multilayer), milled by a Yenadent CAD/CAM system, sintered and divided randomly into a three groups. A different surface conditioning was applied to the intaglio surface of each group: 30% hydrogen peroxide, 30% citric acid and control group. Result and discussion: by using of the FTIR spectroscopy, an evidence of new bands formation appeared at 1637cm-1 and 3352cm-1 due to the high oxidizing effect of hydrogen peroxide, and at 630cm-1 and 1663cm-1 due to the chelating action of citric acid, and simultaneously, SEM assessment of the surface topography took place, to identify lines, scratches, or surface dissociation that appeared on the intaglio zirconia surface after conditioning. Conclusion: such analysis provides an enhancement of new convenient, less expensive, reliable trials to improve micro-bond strength of luting cement to Y-TZP ceramics.


2020 ◽  
Vol 61 (2) ◽  
pp. 30-38
Author(s):  
Pâmela Lopes Pedro Da Silva ◽  
Patricia Pereira Maciel ◽  
Lídia Batista Conrado Martins ◽  
Eliseu Aldrigui Münchow ◽  
Rogério Lacerda-Santos ◽  
...  

Introduction: The microabrasion technique can be performed using a commercially available paste, or the dentist can prepare it in his office. Objective: To verify the effect of hydrochloric acid commercial presentation in the handling of microabrasion paste on the enamel surface. Methodology: Bovine incisors were divided into two groups, according to the commercial presentation of 10% hydrochloric acid (liquid or gel). The treatment was carried out through ten applications of 10 s duration each, intercalated with a 10s wash. Twenty teeth (n=10) were used to determine the loss of enamel structure. Each sample was weighed on an analytical balance before and after submission to microabrasion. Another 20 teeth (n=10) were used to determine the average surface roughness (Ra) using a rugosimeter. Three samples from each group of the previous experiment were selected, randomly, and another three additional samples were repared as a control (baseline) for SEM analysis. Results: There was a statistically significant difference between the final and initial mass and the surface roughness of the samples, regardless of the acid commercial presentation. In the SEM images, a regular surface was observed for the control group (baseline). In the other images, there was a surface with considerable irregularity and a slight dissolution of the enamel. Conclusions: The treatment carried out.


Sign in / Sign up

Export Citation Format

Share Document