scholarly journals Differences between adjusted vs. non-adjusted loads in velocity-based training: consequences for strength training control and programming

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10942
Author(s):  
Pedro Jiménez-Reyes ◽  
Adrian Castaño-Zambudio ◽  
Víctor Cuadrado-Peñafiel ◽  
Jorge M. González-Hernández ◽  
Fernando Capelo-Ramírez ◽  
...  

Strength and conditioning specialists commonly deal with the quantification and selection the setting of protocols regarding resistance training intensities. Although the one repetition maximum (1RM) method has been widely used to prescribe exercise intensity, the velocity-based training (VBT) method may enable a more optimal tool for better monitoring and planning of resistance training (RT) programs. The aim of this study was to compare the effects of two RT programs only differing in the training load prescription strategy (adjusting or not daily via VBT) with loads from 50 to 80% 1RM on 1RM, countermovement (CMJ) and sprint. Twenty-four male students with previous experience in RT were randomly assigned to two groups: adjusted loads (AL) (n = 13) and non-adjusted loads (NAL) (n = 11) and carried out an 8-week (16 sessions) RT program. The performance assessment pre- and post-training program included estimated 1RM and full load-velocity profile in the squat exercise; countermovement jump (CMJ); and 20-m sprint (T20). Relative intensity (RI) and mean propulsive velocity attained during each training session (Vsession) was monitored. Subjects in the NAL group trained at a significantly faster Vsession than those in AL (p < 0.001) (0.88–0.91 vs. 0.67–0.68 m/s, with a ∼15% RM gap between groups for the last sessions), and did not achieve the maximum programmed intensity (80% RM). Significant differences were detected in sessions 3–4, showing differences between programmed and performed Vsession and lower RI and velocity loss (VL) for the NAL compared to the AL group (p < 0.05). Although both groups improved 1RM, CMJ and T20, NAL experienced greater and significant changes than AL (28.90 vs.12.70%, 16.10 vs. 7.90% and −1.99 vs. −0.95%, respectively). Load adjustment based on movement velocity is a useful way to control for highly individualised responses to training and improve the implementation of RT programs.

Sports ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 59 ◽  
Author(s):  
Fernando Pareja-Blanco ◽  
Antonio Villalba-Fernández ◽  
Pedro Cornejo-Daza ◽  
Juan Sánchez-Valdepeñas ◽  
Juan González-Badillo

The aim of this study was to compare the time course of recovery following four different resistance exercise protocols in terms of loading magnitude (60% vs. 80% 1RM—one-repetition maximum) and velocity loss in the set (20% vs. 40%). Seventeen males performed four different protocols in full squat exercise, which were as follows: (1) 60% 1RM with a velocity loss of 20% (60-20), (2) 60% 1RM with a velocity loss of 40% (60-40), (3) 80% 1RM with a velocity loss of 20% (80-20), and (4) 80% 1RM with a velocity loss of 40% (80-40). Movement velocity against the load that elicited a 1 m·s−1 velocity at baseline measurements (V1-load), countermovement jump (CMJ) height, and sprint time at 20 m (T20) were assessed at Pre, Post, 6 h-Post, 24 h-Post, and 48 h-Post. Impairments in V1-load were significantly higher for 60-40 than other protocols at Post (p < 0.05). The 60-20 and 80-40 protocols exhibited significant performance impairments for V1-load at 6 h-Post and 24 h-Post, respectively (p < 0.05). CMJ height remained decreased for 60-20 and 60-40 until 24 h-Post (p < 0.001–0.05). Regarding T20, the 80-40 protocol resulted in higher performance than 60-40 at 24 h-Post and the 80-20 protocol induced a greater performance than 60-40 protocol at 48 h-Post (p < 0.05). A higher velocity loss during the set (40%) and a lower relative load (60% 1RM) resulted in greater fatigue and slower rate of recovery than lower velocity loss (20%) and higher relative load (80% 1RM).


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Masatoshi Nakamura ◽  
Tomoichi Yoshida ◽  
Ryosuke Kiyono ◽  
Shigeru Sato ◽  
Nobushige Takahashi

Abstract Background The purpose of this study was to clarify whether there is a synergistic effect on muscular strength and hypertrophy when low-intensity resistance training is performed after heat stress. Methods Thirty healthy young male volunteers were randomly allocated to either the low-intensity resistance training with heat stress group or the control group. The control group performed low-intensity resistance training alone. In the low-intensity resistance training with heat stress group, a hot pack was applied to cover the muscle belly of the triceps brachii for 20 min before the training. The duration of the intervention was 6 weeks. In both groups, the training resistance was 30% of the one repetition maximum, applied in three sets with eight repetitions each and 60-s intervals. The one repetition maximum of elbow extension and muscle thickness of triceps brachii were measured before and after 6 weeks of low intensity resistance training. Results There was no significant change in the one-repetition maximum and muscle thickness in the control group, whereas there was a significant increase in the muscle strength and thickness in the low-intensity resistance training with heat stress group. Conclusion The combination of heat stress and low-intensity resistance training was an effective method for increasing muscle strength and volume. Trial registration University Hospital Medical Information Network Clinical Trials Registry (UMIN000036167; March 11, 2019).


sportlogia ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 161-172
Author(s):  
Borko Petrović ◽  
◽  
Aleksandar Kukrić ◽  
Radenko Dobraš ◽  
Nemanja Zlojutro ◽  
...  

This study aims to determine whether maximum isometric muscle strength, exerted at a certain angle in the knee joint (80 °, 110 °, and 140 °), may be used as a predictor of 1RM in the squat movement task. A group of twenty-four male students (N = 24) took part in the research in 2 separate sessions and 7 days of rest between each. In the first session, the anthropometric measurements and assessment of muscle strength, that is 1RM, were measured by maximum repetition to failure method on the Smith machine. The maximum isometric force (Fmax) of the leg muscles was measured by the Alternating Consecutive Maximum Contraction Test in laboratory conditions on a Smith machine using a dynamometer probe and the Globus Ergo Tesys System 1000 software system. Analyzing the results based on linear regression, the authors conclude that, with an accuracy of 84.5%, we can estimate 1RM in the squat exercise measuring the maximum isometric force exerted at an angle in the knee joint of 140 °. The results obtained by this research can be used in practice when assessing 1 RM based on the measurement of the maximum isometric force for a given movement task.


2020 ◽  
Vol 72 (1) ◽  
pp. 151-159 ◽  
Author(s):  
Michal Wilk ◽  
Artur Golas ◽  
Piotr Zmijewski ◽  
Michal Krzysztofik ◽  
Aleksandra Filip ◽  
...  

AbstractDifferent tempos of movement can be used during resistance training, but programming them is often a trial-and-error practice, as changing the speed at which the exercise is performed does not always correspond with the tempo at which the 1-repetition-maximum occurred. Therefore, the aim of this study was to determine the effect of different movement tempos during the bench press (BP) exercise on the one-repetition maximum (1RM) load. Ninety men (age = 25.8 ± 5.3 years, body mass = 80.2 ± 14.9 kg), with a minimum one year of resistance training experience took part in the study. Using a randomized crossover design, each participant completed the BP 1RM test with five different movement tempos: V/0/V/0, 2/0/V/0, 5/0/V/0, 8/0/V/0 and 10/0/V/0. Repeated measures ANOVA compared the differences between the 1RM at each tempo. The 1RM load was significantly greater during V/0/V/0 and 2/0/V/0 compared to 5/0/V/0, 8/0/V/0, and 10/0/V/0 (p < 0.01). Furthermore, the 1RM load was significantly greater during 5/0/V/0 compared to 8/0/V/0 and 10/0/V/0 (p < 0.01), but there were no differences between either V/0/V/0 and 2/0/V/0 (p = 0.92) or between 8/0/V/0 and 10/0/V/0 (p = 0.08). Therefore, different movement tempos used during training should be accompanied by their own tempo-specific 1RM testing, as slower eccentric phases significantly decrease maximal concentric performance. Furthermore, 1RM test procedures should include information about the movement tempo used during the test protocol. In addition, the standardization of the tempo should be taken into account in investigations that use the 1 RM test to assess the effects of any treatment on maximal muscle strength.


2020 ◽  
Vol 45 (8) ◽  
pp. 817-828 ◽  
Author(s):  
David Rodríguez-Rosell ◽  
Juan Manuel Yáñez-García ◽  
Ricardo Mora-Custodio ◽  
Fernando Pareja-Blanco ◽  
Antonio G. Ravelo-García ◽  
...  

This study aimed to compare the effects of 2 resistance training (RT) programs with different velocity losses (VLs) allowed in each set: 10% (VL10%) versus 30% (VL30%) on neuromuscular performance and hormonal response. Twenty-five young healthy males were randomly assigned into 2 groups: VL10% (n = 12) or VL30% (n = 13). Subjects followed a velocity-based RT program for 8 weeks (2 sessions per week) using only the full-squat (SQ) exercise at 70%–85% 1-repetition maximum (1RM). Repetition velocity was recorded in all training sessions. A 20-m running sprint, countermovement jump (CMJ), 1RM, muscle endurance, and electromyogram (EMG) during SQ exercise and resting hormonal concentrations were assessed before and after the RT program. Both groups showed similar improvements in muscle strength and endurance variables (VL10%: 7.0%–74.8%; VL30%: 4.2%–73.2%). The VL10% resulted in greater percentage increments in CMJ (9.2% vs. 5.4%) and sprint performance (–1.5% vs. 0.4%) than VL30%, despite VL10% performing less than half of the repetitions than VL30% during RT. In addition, only VL10% showed slight increments in EMG variables, whereas no significant changes in resting hormonal concentrations were observed. Therefore, our results suggest that velocity losses in the set as low as 10% are enough to achieve significant improvements in neuromuscular performance, which means greater efficiency during RT. Novelty The VL10% group showed similar or even greater percentage of changes in physical performance compared with VL30%. No significant changes in resting hormonal concentrations were observed for any training group. Curvilinear relationships between percentage VL in the set and changes in strength and CMJ performance were observed.


2017 ◽  
Vol 12 (9) ◽  
pp. 1249-1255 ◽  
Author(s):  
Mario Muñoz-López ◽  
David Marchante ◽  
Miguel A. Cano-Ruiz ◽  
José López Chicharro ◽  
Carlos Balsalobre-Fernández

Purpose:To analyze the load-, force-, and power-velocity relationships and determine the load that optimizes power output on the pull-up exercise. Methods:Eighty-two resistance-trained men (age 26.8 ± 5.0 y; pull-up 1-repetition maximum [1-RM; normalized per kg of body mass] 1.5 ± 0.34) performed 2 repetitions with 4 incremental loads (range 70–100%1-RM) in the pull-up exercise while mean propulsive velocity (MPV), force (MPF), and power (MPP) were measured using a linear transducer. Relationships between variables were studied using first- and second-order least-squares regression, and subjects were divided into 3 groups depending on their 1-RM for comparison purposes. Results:Almost perfect individual load-velocity (R2 = .975 ± 0.02), force-velocity (R2 = .954 ± 0.04), and power-velocity (R2 = .966 ± 0.04) relationships, which allowed to determine the velocity at each %1-RM, as well as the maximal theoretical force (F0), velocity (V0), and power (Pmax) for each subject were observed. Statistically significant differences between groups were observed for F0 (P < .01) but not for MPV at each %1-RM, V0, and Pmax (P > .05). In addition, high correlations between F0 and 1-RM (r = .811) and V0 and Pmax (r = .865) were observed. Finally, the authors observed that the load that maximized MPP was 71.0% ± 6.6%1-RM. Conclusions:The very high load-velocity, force-velocity, and power-velocity relationships enables estimation of 1-RM by measuring movement velocity, as well as determination of maximal force, velocity, and power capabilities. This information could be of great interest to strength and conditioning coaches who wish to monitor pull-up performance.


Author(s):  
Manuel García-Sillero ◽  
Jose Manuel Jurado-Castro ◽  
Javier Benítez-Porres ◽  
Salvador Vargas-Molina

The aim of this research was to verify whether the application of percussion therapy during inter-set rest periods increases the number of repetitions performed before reaching a 30% velocity loss threshold during a bench press exercise. Methods: Twenty-four male university students participated in this study (24.3 ± 1.3 years; 77.5 ± 8.3 kg; 177.0 ± 5.6 cm; 24.7 ± 2.6 kg∙m−2). Participants were randomized into two groups: a percussion therapy group (PTG) and a control group (CG). They performed 4 sets at 70% of a one-repetition maximum before reaching a 30% velocity loss threshold with an inter-set recovery of 3 min. Results: The PTG performed a greater total number of repetitions compared to the CG (44.6 ± 4.8 vs. 39.5 ± 6.8; p = 0.047; ES = 0.867). No differences were observed for the different movement velocity variables and fatigue control (p > 0.05). Conclusions: Percussion therapy is an effective method to delay the loss of movement velocity in the bench press exercise.


2020 ◽  
Vol 19 (4) ◽  
pp. 322
Author(s):  
Levy Anthony De Oliveira ◽  
Fernando Martín-Rivera ◽  
Marzo Edir Da Silva-Grigoletto

Introduction: Aiming a more effective intensity control in resistance training (RT), the measurement of movement velocity (MV) has gained attention from the scientific community and strength and conditioning professionals. Objectives: First, to analyze from a critical point of view the indicators that serve as a reference for the expression and control of intensity in the RT. These indicators created from the world of bodybuilding have been used for decades, without any relevant modification, to improve the physical performance of athletes from different sports. The second objective was to describe a rational and precise proposal for the best determination and control of intensity in the RT. Methods: Systematic review articles with and without meta-analysis and clinical trials on the measurement of MV in RT were selected. Conclusion: Monitoring MV allows more precise control of the RT intensity.Keywords: exercise, velocity measurement, muscle strength.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7533 ◽  
Author(s):  
Pablo Jorge Marcos-Pardo ◽  
Jorge Miguel González-Hernández ◽  
Amador García-Ramos ◽  
Abraham López-Vivancos ◽  
Pedro Jiménez-Reyes

BackgroundMovement velocity has been proposed as an effective tool to prescribe the load during resistance training in young healthy adults. This study aimed to elucidate whether movement velocity could also be used to estimate the relative load (i.e., % of the one-repetition maximum (1RM)) in older women.MethodsA total of 22 older women (age = 68.2 ± 3.6 years, bench press 1RM = 22.3 ± 4.7 kg, leg press 1RM = 114.6 ± 15.9 kg) performed an incremental loading test during the free-weight bench press and the leg press exercises on two separate sessions. The mean velocity (MV) was collected with a linear position transducer.ResultsA strong linear relationship between MV and the relative load was observed for the bench press (%1RM = −130.4 MV + 119.3;r2= 0.827, standard error of the estimate (SEE) = 6.10%1RM,p< 0.001) and leg press exercises (%1RM = −158.3 MV + 131.4;r2= 0.913, SEE = 5.63%1RM,p< 0.001). No significant differences were observed between the bench press and leg press exercises for the MV attained against light-medium relative loads (≤70%1RM), while the MV associated with heavy loads (≥80%1RM) was significantly higher for the leg press.ConclusionsThese results suggest that the monitoring of MV could be useful to prescribe the loads during resistance training in older women. However, it should be noted that the MV associated with a given %1RM is significantly lower in older women compared to young healthy individuals.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Philipp Zimmer ◽  
Freerk T. Baumann ◽  
Janis Ebel ◽  
Eva Maria Zopf ◽  
Wilhelm Bloch ◽  
...  

Introduction. Resistance training is rarely offered to hemato-oncological patients in the daily clinical routine due to its potential harmful impact on the cardiovascular system and the long periods of thrombocytopenia experienced by these patients. Therefore, it is important to determine a valid assessment to define and control resistance training. In this study, the feasibility of a maximal voluntary contraction (MVC) test was investigated in hemato-oncological patients. This inexpensive assessment may be a practicable alternative to the one repetition maximum test which is currently described as the gold standard.Methods. 29 hemato-oncological patients with platelet counts between 30000/μL and 70000/μL were recruited for this pilot study. Complications like petechial bleedings, muscle convulsion, and pain were assessed using the Brief Pain Inventory before and 48 hours after the MVC test, which was performed unidirectionally for the quadriceps muscle.Results. We did not detect any statistically significant test-related exacerbations or pain development.Discussion. MVC testing seems to be a feasible method to control a resistance training program in hemato-oncological patients. Further studies need to extend their methods and, for example, compare the MVC test with the one repetition maximum test.


Sign in / Sign up

Export Citation Format

Share Document