scholarly journals Epidemiology of antimicrobial resistance (AMR) on California dairies: descriptive and cluster analyses of AMR phenotype of fecal commensal bacteria isolated from adult cows

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11108
Author(s):  
Essam M. Abdelfattah ◽  
Pius S. Ekong ◽  
Emmanuel Okello ◽  
Tapakorn Chamchoy ◽  
Betsy M. Karle ◽  
...  

Background This study describes the occurrence of antimicrobial resistance (AMR) in commensal Escherichia coli and Enterococcus/Streptococcus spp. (ES) isolated from fecal samples of dairy cows and assesses the variation of AMR profiles across regions and seasons following the implementation of the Food and Agricultural Code (FAC) Sections 14400–14408 (formerly known as Senate Bill, SB 27) in California (CA). Methods The study was conducted on ten dairies distributed across CA’s three milk sheds: Northern California (NCA), Northern San Joaquin Valley (NSJV), and the Greater Southern California (GSCA). On each study dairy, individual fecal samples were collected from two cohorts of lactating dairy cows during the fall/winter 2018 and spring/summer 2019 seasons. Each cohort comprised of 12 cows per dairy. The fecal samples were collected at enrollment before calving (close-up stage) and then monthly thereafter for four consecutive time points up to 120 days in milk. A total of 2,171 E. coli and 2,158 ES isolates were tested for antimicrobial susceptibility using the broth microdilution method against a select panel of antimicrobials. Results The E. coli isolates showed high resistance to florfenicol (83.31% ± 0.80) and sulphadimethoxine (32.45%), while resistance to ampicillin (1.10% ± 0.21), ceftiofur (1.93% ± 0.29), danofloxacin (4.01% ± 0.42), enrofloxacin (3.31% ± 0.38), gentamicin (0.32% ± 0.12) and neomycin (1.61% ± 0.27) had low resistance proportions. The ES isolates were highly resistant to tildipirosin (50.18% ± 1.10), tilmicosin (48% ± 1.10), tiamulin (42%) and florfenicol (46% ± 1.10), but were minimally resistant to ampicillin (0.23%) and penicillin (0.20%). Multidrug resistance (MDR) (resistance to at least 1 drug in ≥3 antimicrobial classes) was observed in 14.14% of E. coli isolates and 39% of ES isolates. Escherichia coli isolates recovered during winter showed higher MDR prevalence compared to summer isolates (20.33% vs. 8.04%). A higher prevalence of MDR was observed in NSJV (17.29%) and GSCA (15.34%) compared with NCA (10.10%). Conclusions Our findings showed high rates of AMR to several drugs that are not labeled for use in lactating dairy cattle 20 months of age or older. Conversely, very low resistance was observed for drugs labeled for use in adult dairy cows, such as cephalosporins and penicillin. Overall, our findings identified important differences in AMR by antimicrobial class, region and season.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pimlapas Leekitcharoenphon ◽  
Markus Hans Kristofer Johansson ◽  
Patrick Munk ◽  
Burkhard Malorny ◽  
Magdalena Skarżyńska ◽  
...  

AbstractThe emergence of antimicrobial resistance (AMR) is one of the biggest health threats globally. In addition, the use of antimicrobial drugs in humans and livestock is considered an important driver of antimicrobial resistance. The commensal microbiota, and especially the intestinal microbiota, has been shown to have an important role in the emergence of AMR. Mobile genetic elements (MGEs) also play a central role in facilitating the acquisition and spread of AMR genes. We isolated Escherichia coli (n = 627) from fecal samples in respectively 25 poultry, 28 swine, and 15 veal calf herds from 6 European countries to investigate the phylogeny of E. coli at country, animal host and farm levels. Furthermore, we examine the evolution of AMR in E. coli genomes including an association with virulence genes, plasmids and MGEs. We compared the abundance metrics retrieved from metagenomic sequencing and whole genome sequenced of E. coli isolates from the same fecal samples and farms. The E. coli isolates in this study indicated no clonality or clustering based on country of origin and genetic markers; AMR, and MGEs. Nonetheless, mobile genetic elements play a role in the acquisition of AMR and virulence genes. Additionally, an abundance of AMR was agreeable between metagenomic and whole genome sequencing analysis for several AMR classes in poultry fecal samples suggesting that metagenomics could be used as an indicator for surveillance of AMR in E. coli isolates and vice versa.


2020 ◽  
Vol 13 (2) ◽  
pp. 360-363
Author(s):  
Shikha Tamta ◽  
Obli Rajendran Vinodh Kumar ◽  
Shiv Varan Singh ◽  
Bommenahalli Siddaramiah Pruthvishree ◽  
Ravichandran Karthikeyan ◽  
...  

Background and Aim: Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli are gradually increasing worldwide and carry a serious public threat. This study aimed to determine the antimicrobial resistance pattern of ESBL-producing E. coli isolated from fecal samples of piglets and pig farm workers. Materials and Methods: Fecal samples from <3-month-old piglets (n=156) and farm workers (n=21) were processed for the isolation of ESBL-producing E. coli in MacConkey agar added with 1 μg/mL of cefotaxime. E. coli (piglets=124; farm workers=21) were tested for ESBL production by combined disk method and ESBL E-strip test. Each of the ESBL-positive isolate was subjected to antibiotic susceptibility testing. The ESBL-producing E. coli were further processed for genotypic confirmation to CTX-M gene. Results: A total of 55 (44.4%, 55/124) and nine (42.9%, 9/21) ESBL-producing E. coli were isolated from piglets and farm workers, respectively. Antibiotic susceptibility testing of the ESBL-positive E. coli isolates from piglets and farm workers showed 100% resistance to ceftazidime, cefotaxime, cefotaxime/clavulanic acid, ceftazidime/clavulanic acid, and cefpodoxime. A proportion of 100% (55/55) and 88.9% (8/9) ESBL-positive E. coli were multidrug resistance (MDR) in piglets and farm workers, respectively. On genotypic screening of the ESBL E. coli isolated from piglets (n=55), 15 were positive for the blaCTX-M gene and of the nine ESBL E. coli from farm workers, none were positive for the blaCTX-M gene. Conclusion: Although there was no significant difference in isolation of ESBL-producing E. coli between piglets and farm workers, the ESBL-positive E. coli from piglets showed relatively higher MDR than farm workers.


2020 ◽  
Author(s):  
Baoguang Liu ◽  
Xiaoling Yuan ◽  
Yiheng Chen ◽  
Xiaoshen Li ◽  
Ming Bai ◽  
...  

Abstract Background The spread of ESBLs-producing bacteria has been strikingly rapid in many regions of the world and it causes therapeutic difficulties in everyday practice. The aims of this study were to investigate the prevalence and susceptibilities of ESBLs-producing Escherichia coli isolates from healthy Tibetan yaks in China, to evaluate the activity of drug combinations on ESBLs-producing E. coli isolates. Methods From July 2018 to August 2019, a total of 750 nasal swab samples were tested for the presence of E. coli and ESBLs-producing strains. The MICs of 11 antimicrobial agents alone and combinations with sulbactam, EDTA or sulbactam-EDTA against 240 ESBLs-producing E.coli strains were determined by the broth microdilution method. Results Overall, 59.87% (n = 449) of the samples were positive for E. coli, 240 (53.45%) of 449 E. coli isolates were confirmed to be ESBLs-producing. The addition of sulbactam to the third generation cephalosporins, amikacin and fosfomycin for all isolates resulted in low MICs, increasing the level of susceptibility from 0, 0 and 0% to 50 ~ 87.5, 4.2 and 100% respectively. The addition of EDTA to fluoroquinolones, doxycycline, florfenicol, amikacin and fosfomycin, showed improved activities and resulted in low MICs, increasing the level of susceptibility from 0, 0, 8.3, 0 and 0% to 4.2 ~ 29.2, 33.3, 33.3, 66.7 and 45.8%, respectively. All other antibacterials (except fluoroquinolones, doxycycline and florfenicol), when combined with sulbactam-EDTA, were found to be more active than combinations only with sulbactam or with EDTA against most of isolates, with lower MIC50s and MIC90s. Conclusion In conclusion, ESBLs-producing E. coli isolates were widespread in healthy Tibetan yaks in China. ESBLs-producing E. coli isolates exhibited varying degrees of multidrug resistance. This study these findings suggested that sulbactam can enhance activity of β-lactams and some non-β-lactams of antimicrobial agents and had a synergistic effects with EDTA in improving activities of some families of antimicrobials.


Antibiotics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 152 ◽  
Author(s):  
Ramona Iseppi ◽  
Alessandro Di Cerbo ◽  
Patrizia Messi ◽  
Carla Sabia

Background: We investigated the virulence factors, genes, antibiotic resistance patterns, and genotypes (VRE and ESBL/AmpC) production in Enterococci and Enterobacteriaceae strains isolated from fecal samples of humans, dogs, and cats. Methods: A total of 100 fecal samples from 50 humans, 25 dogs, and 25 cats were used in the study. MICs of nine antimicrobials were determined using the broth microdilution method. Polymerase chain reaction was used for the detection of genes responsible for antibiotic resistance (VRE and ESBL/AmpC) and virulence genes both in Enterococcus species, such as cytolysin (cylA, cylB, cylM), aggregation substance (agg), gelatinase (gelE), enterococcal surface protein (esp), cell wall adhesins (efaAfs and efaAfm), and in Enterobacteriaceae, such as cytolysin (hemolysin) and gelatinase production (afa, cdt, cnf1, hlyA, iutA, papC, sfa). Results: Enterococcus faecium was the most prevalent species in humans and cats, whereas Enterococcus faecalis was the species isolated in the remaining samples. A total of 200 Enterobacteriaceae strains were also detected, mainly from humans, and Escherichia coli was the most frequently isolated species in all types of samples. In the Enterococcus spp, the highest percentages of resistance for ampicillin, amoxicillin/clavulanate, erythromycin, tetracycline, ciprofloxacin, teicoplanin, and vancomycin were detected in cat isolates (41.6%, 52.8%, 38.9%, 23.6%, 62.5%, 20.8%, and 23.6% respectively), and in E. coli, a higher rate of resistance to cefotaxime and ceftazidime emerged in cat and dog samples, if compared with humans (75.4% and 66.0%, 80.0% and 71.4%, and 32.0% and 27.2%, respectively). Regarding the total number of enterococci, 5% and 3.4% of the strains were vancomycin and teicoplanin resistant, and the vancomycin resistance (van A) gene has been detected in all samples by PCR amplification. All the Enterobacteriaceae strains were confirmed as ESBL producers by PCR and sequencing, and the most frequent ESBL genes in E. coli strains from humans and pet samples were blaCTX-M-1 and blaCTX-M-15. Conclusions: Our results provide evidence that one or more virulence factors were present in both genera, underlining again the ability of pet strains to act as pathogens.


2008 ◽  
Vol 74 (6) ◽  
pp. 1731-1739 ◽  
Author(s):  
Bruce A. Wagner ◽  
Barbara E. Straw ◽  
Paula J. Fedorka-Cray ◽  
David A. Dargatz

ABSTRACT A body of evidence exists that suggests that antimicrobial use in food animals leads to resistance in both pathogenic and commensal bacteria. This study focused on the impact of three different antimicrobial regimes (low-level continuous, pulse, and no antimicrobial) for two antimicrobials (chlortetracycline and tylosin) on the presence of Salmonella spp. and on the prevalence of antimicrobial resistance of both Salmonella spp. and nonspecific Escherichia coli in fecal samples from feeder swine. The prevalence of fecal samples positive for Salmonella spp. significantly decreased between the samples taken at feeder placement compared to samples taken when the animals were close to market weight. Differences in resistance of Salmonella spp. did not appear to be influenced by dosing treatment including the control. Analysis of antimicrobial resistance examining both susceptibility and resistance, as well as MIC outcomes, demonstrated that only resistance to cephalothin increased in E. coli under the pulse chlortetracycline treatment. These results suggest that the dosing regimes examined in this study did not lead to an increase in either the prevalence of Salmonella spp. or the prevalence of antimicrobial resistance in isolates of Salmonella spp. or E. coli.


2020 ◽  
Vol 83 (7) ◽  
pp. 1261-1267
Author(s):  
TING LIU ◽  
JINGFAN WANG ◽  
XIAOMAN GONG ◽  
XIAOXIA WU ◽  
LIU LIU ◽  
...  

ABSTRACT The purpose of the present study was to determine the bioactive compounds in rosemary essential oil (REO) and tea tree essential oil (TEO) and to investigate their antibacterial and antibiofilm activities against Staphylococcus aureus and Escherichia coli in vitro. The MIC and MBC assays were performed to assess the antibacterial activity of these two EOs against S. aureus and E. coli with the broth microdilution method. A crystal violet assay was used to ascertain the effects of EOs on the biofilm formation of the test strains, and a tetrazolium bromide (MTT) assay was used to measure the level of inactivation of mature biofilms by EOs. Gas chromatography–mass spectrometry revealed 15 compounds in REO and 27 compounds in TEO, representing 97.78 and 98.13% of the total EO, respectively. Eucalyptol and α-pinene were found in high concentrations in REO, and the two major compounds in TEO were 4-terpineol and terpinolene. The MICs of REO for the two S. aureus and E. coli test strains were both 0.5 mg/mL, and the MICs of TEO for the two strains were both 0.25 mg/mL. Therefore, these EOs can significantly inhibit the formation of biofilms and induced morphological biofilm changes, as verified by scanning electron microscopy. Both EOs had destructive effects on the mature biofilm of the two test strains. TEO was more inhibitory than REO for biofilm formation by the two test strains. HIGHLIGHTS


Author(s):  
Jenna A Chance ◽  
Joel M DeRouchey ◽  
Raghavendra G Amachawadi ◽  
Victor Ishengoma ◽  
Tiruvoor G Nagaraja ◽  
...  

Abstract A total of 360 weanling barrows (Line 200 ×400, DNA, Columbus NE; initially 5.6 ± 0.03 kg) were used in a 42-d study to evaluate yeast-based pre- and probiotics (Phileo by Lesaffre, Milwaukee, WI) in diets with or without pharmacological levels of Zn on growth performance and antimicrobial resistance (AMR) patterns of fecal Escherichia coli. Pens were assigned to 1 of 4 dietary treatments with 5 pigs per pen and 18 pens per treatment. Dietary treatments were arranged in a 2 × 2 factorial with main effects of yeast-based pre- and probiotics (none vs. 0.10% ActiSaf Sc 47 HR+, 0.05% SafMannan, and 0.05% NucleoSaf from d 0 to 7, then concentrations were lowered by 50% from d 7 to 21) and pharmacological levels of Zn (110 vs. 3,000 mg/kg from d 0 to 7, and 2,000 mg/kg from d 7 to 21 with added Zn provided by ZnO). All pigs were fed a common diet from d 21 to 42 post-weaning. There were no yeast ×Zn interactions or effects from yeast additives observed on any response criteria. From d 0 to 21, and 0 to 42, pigs fed pharmacological levels of Zn had increased (P &lt; 0.001) ADG and ADFI. Fecal samples were collected on d 4, 21, and 42 from the same three pigs per pen for fecal dry matter (DM) and AMR patterns of E. coli. On d 4, pigs fed pharmacological levels of Zn had greater fecal DM (P = 0.043); however, no differences were observed on d 21 or 42. E. coli was isolated from fecal samples and the microbroth dilution method was used to determine the minimal inhibitory concentrations (MIC) of E. coli isolates to 14 different antimicrobials. Isolates were categorized as either susceptible, intermediate, or resistant based on Clinical and Laboratory Standards Institute (CLSI) guidelines. The addition of pharmacological levels of Zn had a tendency (P = 0.051) to increase the MIC values of ciprofloxacin; however, these MIC values were still well under the CLSI classified resistant breakpoint for Ciprofloxacin. There was no evidence for differences (P &gt; 0.10) for yeast additives or Zn for AMR of fecal E. coli isolates to any of the remaining antibiotics. In conclusion, pharmacological levels of Zn improved ADG, ADFI, and all isolates were classified as susceptible to ciprofloxacin although the MIC of fecal E. coli tended to be increased. Thus, the short-term use of pharmacological levels of Zn did not increase antimicrobial resistance. There was no response observed from live yeast and yeast extracts for any of the growth, fecal DM, or AMR of fecal E. coli criteria.


2019 ◽  
Vol 366 (16) ◽  
Author(s):  
Erjie Tian ◽  
Ishfaq Muhammad ◽  
Wanjun Hu ◽  
Zhiyong Wu ◽  
Rui Li ◽  
...  

ABSTRACT Escherichia coli are important foodborne zoonotic pathogens. Apramycin is a key aminoglycoside antibiotic used by veterinarians against E. coli. This study was conducted to establish the epidemiological cut-off value (ECV) and resistant characteristics of apramycin against E. coli. In this study, 1412 clinical isolates of E. coli from chickens in China were characterized. Minimum inhibitory concentrations (MICs) of apramycin were assessed by broth microdilution method. MIC50 and MIC90 for apramycin against E. coli (0.5–256 µg/mL) were 8 and 16 µg/mL, respectively. In this study, the tentative ECV was determined to be 16 µg/mL by the statistical method and 32 µg/mL by ECOFFinder software. Besides, the percentages of aac(3)-IV positive strains ascended with the increase of MIC values of apramycin, and the gene npmA was detected in strains with higher MICs. Sixteen apramycin highly resistant strains displayed multiple drug resistance (100%) to amoxicillin, ampicillin, gentamicin, doxycycline, tetracycline, trimethoprim and florfenicol, while most of them were susceptible to amikacin and spectinomycin. In summary, the tentative ECV of apramycin against E. coli was recommended to be 16 µg/mL.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1284
Author(s):  
Jorge Rivera-Gomis ◽  
Pedro Marín ◽  
Cristina Martínez-Conesa ◽  
Julio Otal ◽  
María José Jordán ◽  
...  

Antimicrobial resistance (AMR) is a global threat for human and animal health. Few studies have been carried out in laying hens. We evaluated the antimicrobial susceptibility of commensal Campylobacter jejuni, Escherichia coli, and Enterococcus faecalis isolates in Spanish laying hens in 2018. The Minimum Inhibitory Concentration (MIC) was used to identify any AMR of the studied isolates by means of a broth microdilution method. C. jejuni was highly resistant to the B category antimicrobials, and 52% of the isolates were susceptible to all the antimicrobials tested. E. coli showed medium and high percentages of resistance to the B and A antibiotic categories, respectively, and 33.33% of the isolates were susceptible to all antimicrobials. The E. faecalis resistance to A category antimicrobials was variable, and 4.62% of the isolates were susceptible to all antimicrobials. In our work, novel data on AMR in laying hen commensal isolates in Spain is provided, and the AMR levels differ from those reported for poultry in the EU. A high resistance to key drugs for human medicine was found, representing a public health risk.


2020 ◽  
Vol 13 (10) ◽  
pp. 2053-2061
Author(s):  
Dmitry A. Makarov ◽  
Olga E. Ivanova ◽  
Sergey Yu. Karabanov ◽  
Maria A. Gergel ◽  
Anastasia V. Pomazkova

Background and Aim: Commensal Escherichia coli is an important indicator of antimicrobial resistance (AMR) in animals and food of animal origin. Therefore, it was recommended by the World Health Organization and OIE for inclusion in resistance surveillance programs. At the same time, the data on E. coli isolates from animals in Russia are scarce. The aim of this work was to determine the current prevalence of resistance and genetic markers of non-pathogenic commensal E. coli collected from major food-producing animals (poultry, pigs, and cows) in different regions of Russia and to compare these data with data from other countries to prioritize antimicrobials for limiting their use according to the National Action Plan. Materials and Methods: Samples (n=306) were collected from biomaterial of chicken, turkey, cows, and pigs raised on 11 farms in the European part of Russia, Siberia, and North Caucasus. Isolates (n=306) of E. coli were tested for resistance to 11 antimicrobials from ten classes using the broth microdilution method. MICs were interpreted against EUCAST microbiological and clinical breakpoints. For data analysis and statistical processing, the AMRcloud online platform was used. The data are presented in comparison with other countries. Results: In Russia, higher levels of microbiological and clinical resistance of E. coli to critically important antimicrobials, including colistin, cefotaxime, and ciprofloxacin, were found compared to other countries, especially in poultry: About 30% of isolates from chicken were resistant to colistin, 8% to cefotaxime, and 88% to ciprofloxacin according to EUCAST ECOFFs. Only 10% of isolates from cows were resistant to cefotaxime. About 47% of isolates of E. coli from chicken had a moderate relative resistance for ampicillin and 56% for tetracycline. For most antimicrobials, isolates from cows demonstrated a lower resistance than isolates from poultry and pigs. All tested isolates from chicken, turkey, and pigs showed a simultaneous microbiological resistance to at least three classes of antimicrobials. No pan-resistant isolates were found. Conclusion: High levels of AMR of commensal E. coli from poultry, especially for critically important drugs, are a matter of concern and should be taken into account when choosing antimicrobials to be restricted for use in animal husbandry according to the National Action Plan.


Sign in / Sign up

Export Citation Format

Share Document