scholarly journals Antimicrobial Resistance of Campylobacter jejuni, Escherichia coli and Enterococcus faecalis Commensal Isolates from Laying Hen Farms in Spain

Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1284
Author(s):  
Jorge Rivera-Gomis ◽  
Pedro Marín ◽  
Cristina Martínez-Conesa ◽  
Julio Otal ◽  
María José Jordán ◽  
...  

Antimicrobial resistance (AMR) is a global threat for human and animal health. Few studies have been carried out in laying hens. We evaluated the antimicrobial susceptibility of commensal Campylobacter jejuni, Escherichia coli, and Enterococcus faecalis isolates in Spanish laying hens in 2018. The Minimum Inhibitory Concentration (MIC) was used to identify any AMR of the studied isolates by means of a broth microdilution method. C. jejuni was highly resistant to the B category antimicrobials, and 52% of the isolates were susceptible to all the antimicrobials tested. E. coli showed medium and high percentages of resistance to the B and A antibiotic categories, respectively, and 33.33% of the isolates were susceptible to all antimicrobials. The E. faecalis resistance to A category antimicrobials was variable, and 4.62% of the isolates were susceptible to all antimicrobials. In our work, novel data on AMR in laying hen commensal isolates in Spain is provided, and the AMR levels differ from those reported for poultry in the EU. A high resistance to key drugs for human medicine was found, representing a public health risk.

2007 ◽  
Vol 70 (3) ◽  
pp. 736-738 ◽  
Author(s):  
M. NORSTRÖM ◽  
G. JOHNSEN ◽  
M. HOFSHAGEN ◽  
H. THARALDSEN ◽  
H. KRUSE

Antimicrobial susceptibility in Campylobacter jejuni collected from the environment outside four broiler houses (n = 63) and from the environment inside these broiler houses (including broiler droppings) (n = 36) from May to September 2004 was studied and compared with isolates from Norwegian broilers analyzed within the frame of the Norwegian monitoring program of antimicrobial resistance in feed, food, and animals (NORM-VET) in 2004 (n = 75). The MICs of oxytetracycline, ampicillin, erythromycin, gentamicin, enrofloxacin, and nalidixic acid were obtained by the broth microdilution method VetMIC. The present study, which to our knowledge is the first Norwegian study on the occurrence of antimicrobial resistance in Campylobacter spp. from the environment of broiler houses, revealed a very low occurrence of antimicrobial resistance in C. jejuni from the broilers and broiler house environments studied. All isolates originating from the four broiler houses studied were susceptible to all the antimicrobial agents tested, except for one isolate from the outdoor environment (courtyard soil), which was resistant to oxytetracycline (MIC, 8 mg/liter). For the isolates from broilers (NORM-VET), low prevalences of resistance to oxytetracycline (1.3%) and ampicillin (4%) were observed. No quinolone resistance was observed. The results for the broiler isolates are in agreement with the earlier findings of a very low prevalence of resistance in Campylobacter from broilers in Norway, which reflects the low usage of antimicrobials in Norwegian broiler production. Furthermore, the present data are in accordance with antimicrobial susceptibility data for C. jejuni from domestically acquired human cases.


2021 ◽  
Vol 16 (1) ◽  
pp. 54-63
Author(s):  
A. V. Fedorova ◽  
G. A. Klyasova ◽  
I. N. Frolova ◽  
S. A. Khrulnova ◽  
A. V. Vetokhina ◽  
...  

Objective: to determine antimicrobial resistance of Enterococcus faecium and Enterococcus faecalis isolated from blood culture of hematological patients during different study periods.Materials and methods. Antimicrobial susceptibility of Enterococcus spp., collected as part of the multicenter study was tested by the broth microdilution method (USA Clinical and Laboratory Standards Institute (CLSI), 2018), to daptomycin by Etest (bioMeriéux, France). High-level gentamicin resistance (HLGR) and high-level streptomycin resistance (HLSR) was performed by the agar dilution method (CLSI (Oxoid, UK), 2018).Results. The susceptibility of 366 E. faecium (157 in 2002-2009 and 209 in 2010-2017) and 86 E. faecalis (44 in 20022009 and 42 in 2010-2017) was studied. In the second study period (2010-2017) the rise of vancomycin-resistant E. faecium (VREF) increased from 8.3 % to 23.4 % (p = 0.0001), and two linezolid-resistant (LREF) were identified. All VREF and LREF remained susceptible to daptomycin and tigecycline. The rate of susceptible to tetracycline E. faecium remained the same (73.9 and 74.6 %), and an increase in susceptibility to chloramphenicol (74.5 and 82.3 %) was observed. Susceptibility of E. faecium to tetracycline was detected with almost the same rate and in a part of isolates, the increase of susceptibility to chloramphenicol was registered during the analyzed periods. The rise of E. faecium susceptible to HLGR and HLSR has increased significantly in 2010-2017 compared to 2002-2009. Erythromycin, levofloxacin, ampicillin and penicillin had the least activity against E. faecium (less than 5 %).All E. faecalis were susceptible to tigecycline, linezolid, and teicoplanin. Only one of E. faecalis had intermediate resistance to vancomycin. High susceptibility to ampicillin in E. faecalis remained unchanged (97.7 and 97.6 %, respectively). In the second period of the study the rise of susceptible E. faecalis decreased significantly to penicillin (from 97.7 % to 76.2 %), to levofloxacin (from 59.1 % to 31 %), to HLSR (from 52.3 % до 31 %), and to HLGR (from 47.7 % to 26.2 %), remained unchanged to chloramphenicol (52.3 % and 50 %) and was minimal to erythromycin and tetracycline.Conclusion. The study demonstrated higher rates of antibiotic resistance among E. faecium, which consisted of an increase in VREF and the appearance of linezolid-resistant strains. High susceptibility to ampicillin remained in E. faecalis, but there was an increase in resistance to penicillin and aminoglycosides.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11108
Author(s):  
Essam M. Abdelfattah ◽  
Pius S. Ekong ◽  
Emmanuel Okello ◽  
Tapakorn Chamchoy ◽  
Betsy M. Karle ◽  
...  

Background This study describes the occurrence of antimicrobial resistance (AMR) in commensal Escherichia coli and Enterococcus/Streptococcus spp. (ES) isolated from fecal samples of dairy cows and assesses the variation of AMR profiles across regions and seasons following the implementation of the Food and Agricultural Code (FAC) Sections 14400–14408 (formerly known as Senate Bill, SB 27) in California (CA). Methods The study was conducted on ten dairies distributed across CA’s three milk sheds: Northern California (NCA), Northern San Joaquin Valley (NSJV), and the Greater Southern California (GSCA). On each study dairy, individual fecal samples were collected from two cohorts of lactating dairy cows during the fall/winter 2018 and spring/summer 2019 seasons. Each cohort comprised of 12 cows per dairy. The fecal samples were collected at enrollment before calving (close-up stage) and then monthly thereafter for four consecutive time points up to 120 days in milk. A total of 2,171 E. coli and 2,158 ES isolates were tested for antimicrobial susceptibility using the broth microdilution method against a select panel of antimicrobials. Results The E. coli isolates showed high resistance to florfenicol (83.31% ± 0.80) and sulphadimethoxine (32.45%), while resistance to ampicillin (1.10% ± 0.21), ceftiofur (1.93% ± 0.29), danofloxacin (4.01% ± 0.42), enrofloxacin (3.31% ± 0.38), gentamicin (0.32% ± 0.12) and neomycin (1.61% ± 0.27) had low resistance proportions. The ES isolates were highly resistant to tildipirosin (50.18% ± 1.10), tilmicosin (48% ± 1.10), tiamulin (42%) and florfenicol (46% ± 1.10), but were minimally resistant to ampicillin (0.23%) and penicillin (0.20%). Multidrug resistance (MDR) (resistance to at least 1 drug in ≥3 antimicrobial classes) was observed in 14.14% of E. coli isolates and 39% of ES isolates. Escherichia coli isolates recovered during winter showed higher MDR prevalence compared to summer isolates (20.33% vs. 8.04%). A higher prevalence of MDR was observed in NSJV (17.29%) and GSCA (15.34%) compared with NCA (10.10%). Conclusions Our findings showed high rates of AMR to several drugs that are not labeled for use in lactating dairy cattle 20 months of age or older. Conversely, very low resistance was observed for drugs labeled for use in adult dairy cows, such as cephalosporins and penicillin. Overall, our findings identified important differences in AMR by antimicrobial class, region and season.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243772
Author(s):  
Octavio Mesa-Varona ◽  
Heike Kaspar ◽  
Mirjam Grobbel ◽  
Bernd-Alois Tenhagen

Antimicrobial resistance (AMR) is a global threat in humans and animals, and antimicrobial usage (AMU) has been identified as a main trigger of AMR. The purpose of this work was to compare data on AMR in clinical and non-clinical isolates of Escherichia coli in German broilers and turkeys between 2014 and 2017. Furthermore, we investigated AMR changes over time and the association of changes in AMU with changes in AMR. Data on clinical and non-clinical isolates together with data on therapy frequency of broilers and turkeys were collected from German monitoring systems. Logistic regression analyses were performed to assess the association between the explanatory factors (AMU, year and isolate type) and the dependent variable (AMR). In broilers, the analysis showed lower resistance proportions of clinical isolates of E. coli to ampicillin and colistin (ampicillin: Odds ratio (OR) and 95% confidence interval (CI) = 0.44 (0.3–0.64), p<0.001; colistin: OR and 95% CI = 0.75 (0.73–0.76), p<0.001) but higher proportions for cefotaxime (OR and 95% CI = 4.58 (1.56–15.1), p = 0.007). Resistance to ampicillin, gentamicin and tetracycline was less frequent in clinical isolates in turkeys (ampicillin: OR and 95% CI = 0.4 (0.29–0.53), p<0.001; gentamicin: OR and 95% CI = 0.5 (0.26–0.94), p = 0.035; tetracycline: OR and 95% CI = 0.4 (0.29–0.55), p<0.001). The analysis found decreasing associations of AMU with resistance to tetracycline in turkeys and to colistin in broilers. Year was associated with a decrease in resistance to colistin in broilers and to tetracycline in turkeys. Differences in resistance found in this study between clinical and non-clinical isolates might play an important role in resistance prevalence. This study indicated that further data analyses over longer time intervals are required to clarify the differences found between clinical and non-clinical isolates and to assess the long-term effects of changes in AMU on the prevalence of AMR.


2020 ◽  
Author(s):  
Baoguang Liu ◽  
Xiaoling Yuan ◽  
Yiheng Chen ◽  
Xiaoshen Li ◽  
Ming Bai ◽  
...  

Abstract Background The spread of ESBLs-producing bacteria has been strikingly rapid in many regions of the world and it causes therapeutic difficulties in everyday practice. The aims of this study were to investigate the prevalence and susceptibilities of ESBLs-producing Escherichia coli isolates from healthy Tibetan yaks in China, to evaluate the activity of drug combinations on ESBLs-producing E. coli isolates. Methods From July 2018 to August 2019, a total of 750 nasal swab samples were tested for the presence of E. coli and ESBLs-producing strains. The MICs of 11 antimicrobial agents alone and combinations with sulbactam, EDTA or sulbactam-EDTA against 240 ESBLs-producing E.coli strains were determined by the broth microdilution method. Results Overall, 59.87% (n = 449) of the samples were positive for E. coli, 240 (53.45%) of 449 E. coli isolates were confirmed to be ESBLs-producing. The addition of sulbactam to the third generation cephalosporins, amikacin and fosfomycin for all isolates resulted in low MICs, increasing the level of susceptibility from 0, 0 and 0% to 50 ~ 87.5, 4.2 and 100% respectively. The addition of EDTA to fluoroquinolones, doxycycline, florfenicol, amikacin and fosfomycin, showed improved activities and resulted in low MICs, increasing the level of susceptibility from 0, 0, 8.3, 0 and 0% to 4.2 ~ 29.2, 33.3, 33.3, 66.7 and 45.8%, respectively. All other antibacterials (except fluoroquinolones, doxycycline and florfenicol), when combined with sulbactam-EDTA, were found to be more active than combinations only with sulbactam or with EDTA against most of isolates, with lower MIC50s and MIC90s. Conclusion In conclusion, ESBLs-producing E. coli isolates were widespread in healthy Tibetan yaks in China. ESBLs-producing E. coli isolates exhibited varying degrees of multidrug resistance. This study these findings suggested that sulbactam can enhance activity of β-lactams and some non-β-lactams of antimicrobial agents and had a synergistic effects with EDTA in improving activities of some families of antimicrobials.


2020 ◽  
Vol 7 (2) ◽  
pp. 48
Author(s):  
Anna Vidal ◽  
Laia Aguirre ◽  
Chiara Seminati ◽  
Montse Tello ◽  
Noelia Redondo ◽  
...  

Escherichia coli is considered one of the most common agents associated with neonatal diarrhea in piglets. The aim of this work was to characterize the pathogenic and antimicrobial resistance (AMR) profiles of 122 E. coli strains isolated from pigs suffering diarrhea (n = 94) and pigs without diarrhea (n = 28) of 24 farms in Spain. Virulence factors, toxins and AMR (ESBL and colistin) genes and AMR phenotypes of E. coli isolates were analyzed. Low prevalence of pathogenic E. coli strains (26%) was found in both groups. However, ETEC and VTEC strains were more frequently isolated from diarrheic piglets. Irrespectively of diarrhea occurrence, 97.5% of the strains showed a multidrug-resistance (MDR) profile to aminopenicillins, sulfonamides and tetracyclines. It was found that 22% of E. coli was CTX-M+, with CTX-M-14 being the principal allelic variant. Remarkably, 81.5% of CTX-M+ strains were isolated from diarrheic animals and presented an extended MDR profile to aminopenicillins, quinolones and aminoglycosides. Finally, low frequencies of colistin resistance genes mcr-1 (4/122) and mcr-4 (1/122) were found. MDR E. coli strains are circulating in pig farms of Spain, representing a serious threat to animal and public health. More appropriate diagnostic approaches (genetic and AMR phenotypic analysis) should be implemented in animal health to optimize antibiotic treatments.


2020 ◽  
Vol 7 ◽  
Author(s):  
David Ortega-Paredes ◽  
Sofía de Janon ◽  
Fernando Villavicencio ◽  
Katherine Jaramillo Ruales ◽  
Kenny De La Torre ◽  
...  

Antimicrobial resistance (AMR) is a major health threat for public and animal health in the twenty-first century. In Ecuador, antibiotics have been used by the poultry industry for decades resulting in the presence of multi-drug resistant (MDR) bacteria in the poultry meat production chain, with the consequent risk for public health. This study evaluated the prevalence of ESBL/AmpC and mcr genes in third-generation cephalosporin-resistant Escherichia coli (3GC-R E. coli) isolated from broiler farms (animal component), broiler carcasses (food component), and human enteritis (human component) in Quito-Ecuador. Samples were collected weekly from November 2017 to November 2018. For the animal, food, and human components, 133, 335, and 302 samples were analyzed, respectively. Profiles of antimicrobial resistance were analyzed by an automated microdilution system. Resistance genes were studied by PCR and Sanger sequencing. From all samples, 122 (91.7%), 258 (77%), and 146 (48.3%) samples were positive for 3GC-R E. coli in the animal, food, and human components, respectively. Most of the isolates (472/526, 89.7%) presented MDR phenotypes. The ESBL blaCTX-M-55, blaCTX-M-3, blaCTX-M-15, blaCTX-M-65, blaCTX-M-27, and blaCTX-M-14 were the most prevalent ESBL genes while blaCMY-2 was the only AmpC detected gene. The mcr-1 gene was found in 20 (16.4%), 26 (10.1%), and 3 (2.1%) of isolates from animal, food, and human components, respectively. The implication of poultry products in the prevalence of ESBL/AmpC and mcr genes in 3GC-R must be considered in the surveillance of antimicrobial resistance.


2020 ◽  
Vol 83 (7) ◽  
pp. 1261-1267
Author(s):  
TING LIU ◽  
JINGFAN WANG ◽  
XIAOMAN GONG ◽  
XIAOXIA WU ◽  
LIU LIU ◽  
...  

ABSTRACT The purpose of the present study was to determine the bioactive compounds in rosemary essential oil (REO) and tea tree essential oil (TEO) and to investigate their antibacterial and antibiofilm activities against Staphylococcus aureus and Escherichia coli in vitro. The MIC and MBC assays were performed to assess the antibacterial activity of these two EOs against S. aureus and E. coli with the broth microdilution method. A crystal violet assay was used to ascertain the effects of EOs on the biofilm formation of the test strains, and a tetrazolium bromide (MTT) assay was used to measure the level of inactivation of mature biofilms by EOs. Gas chromatography–mass spectrometry revealed 15 compounds in REO and 27 compounds in TEO, representing 97.78 and 98.13% of the total EO, respectively. Eucalyptol and α-pinene were found in high concentrations in REO, and the two major compounds in TEO were 4-terpineol and terpinolene. The MICs of REO for the two S. aureus and E. coli test strains were both 0.5 mg/mL, and the MICs of TEO for the two strains were both 0.25 mg/mL. Therefore, these EOs can significantly inhibit the formation of biofilms and induced morphological biofilm changes, as verified by scanning electron microscopy. Both EOs had destructive effects on the mature biofilm of the two test strains. TEO was more inhibitory than REO for biofilm formation by the two test strains. HIGHLIGHTS


mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Roderick M. Card ◽  
Shaun A. Cawthraw ◽  
Javier Nunez-Garcia ◽  
Richard J. Ellis ◽  
Gemma Kay ◽  
...  

ABSTRACT The chicken gastrointestinal tract is richly populated by commensal bacteria that fulfill various beneficial roles for the host, including helping to resist colonization by pathogens. It can also facilitate the conjugative transfer of multidrug resistance (MDR) plasmids between commensal and pathogenic bacteria which is a significant public and animal health concern as it may affect our ability to treat bacterial infections. We used an in vitro chemostat system to approximate the chicken cecal microbiota, simulate colonization by an MDR Salmonella pathogen, and examine the dynamics of transfer of its MDR plasmid harboring several genes, including the extended-spectrum beta-lactamase bla CTX-M1. We also evaluated the impact of cefotaxime administration on plasmid transfer and microbial diversity. Bacterial community profiles obtained by culture-independent methods showed that Salmonella inoculation resulted in no significant changes to bacterial community alpha diversity and beta diversity, whereas administration of cefotaxime caused significant alterations to both measures of diversity, which largely recovered. MDR plasmid transfer from Salmonella to commensal Escherichia coli was demonstrated by PCR and whole-genome sequencing of isolates purified from agar plates containing cefotaxime. Transfer occurred to seven E. coli sequence types at high rates, even in the absence of cefotaxime, with resistant strains isolated within 3 days. Our chemostat system provides a good representation of bacterial interactions, including antibiotic resistance transfer in vivo. It can be used as an ethical and relatively inexpensive approach to model dissemination of antibiotic resistance within the gut of any animal or human and refine interventions that mitigate its spread before employing in vivo studies. IMPORTANCE The spread of antimicrobial resistance presents a grave threat to public health and animal health and is affecting our ability to respond to bacterial infections. Transfer of antimicrobial resistance via plasmid exchange is of particular concern as it enables unrelated bacteria to acquire resistance. The gastrointestinal tract is replete with bacteria and provides an environment for plasmid transfer between commensals and pathogens. Here we use the chicken gut microbiota as an exemplar to model the effects of bacterial infection, antibiotic administration, and plasmid transfer. We show that transfer of a multidrug-resistant plasmid from the zoonotic pathogen Salmonella to commensal Escherichia coli occurs at a high rate, even in the absence of antibiotic administration. Our work demonstrates that the in vitro gut model provides a powerful screening tool that can be used to assess and refine interventions that mitigate the spread of antibiotic resistance in the gut before undertaking animal studies. IMPORTANCE The spread of antimicrobial resistance presents a grave threat to public health and animal health and is affecting our ability to respond to bacterial infections. Transfer of antimicrobial resistance via plasmid exchange is of particular concern as it enables unrelated bacteria to acquire resistance. The gastrointestinal tract is replete with bacteria and provides an environment for plasmid transfer between commensals and pathogens. Here we use the chicken gut microbiota as an exemplar to model the effects of bacterial infection, antibiotic administration, and plasmid transfer. We show that transfer of a multidrug-resistant plasmid from the zoonotic pathogen Salmonella to commensal Escherichia coli occurs at a high rate, even in the absence of antibiotic administration. Our work demonstrates that the in vitro gut model provides a powerful screening tool that can be used to assess and refine interventions that mitigate the spread of antibiotic resistance in the gut before undertaking animal studies.


2022 ◽  
Vol 12 ◽  
Author(s):  
Dokyun Kim ◽  
Eun-Jeong Yoon ◽  
Jun Sung Hong ◽  
Min Hyuk Choi ◽  
Hyun Soo Kim ◽  
...  

To monitor national antimicrobial resistance (AMR), the Korea Global AMR Surveillance System (Kor-GLASS) was established. This study analyzed bloodstream infection (BSI) cases from Kor-GLASS phase I from January 2017 to December 2019. Nine non-duplicated Kor-GLASS target pathogens, including Staphylococcus aureus, Enterococcus faecalis, Enterococcus faecium, Streptococcus pneumoniae, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter spp., and Salmonella spp., were isolated from blood specimens from eight sentinel hospitals. Antimicrobial susceptibility testing, AMR genotyping, and strain typing were carried out. Among the 20,041 BSI cases, 15,171 cases were caused by one of the target pathogens, and 12,578 blood isolates were collected for the study. Half (1,059/2,134) of S. aureus isolates were resistant to cefoxitin, and 38.1% (333/873) of E. faecium isolates were resistant to vancomycin. Beta-lactamase-non-producing ampicillin-resistant and penicillin-resistant E. faecalis isolates by disk diffusion method were identified, but the isolates were confirmed as ampicillin-susceptible by broth microdilution method. Among E. coli, an increasing number of isolates carried the blaCTX–M–27 gene, and the ertapenem resistance in 1.4% (30/2,110) of K. pneumoniae isolates was mostly (23/30) conferred by K. pneumoniae carbapenemases. A quarter (108/488) of P. aeruginosa isolates were resistant to meropenem, and 30.5% (33/108) of those carried acquired carbapenemase genes. Over 90% (542/599) of A. baumannii isolates were imipenem-resistant, and all except one harbored the blaOXA–23 gene. Kor-GLASS provided comprehensive AMR surveillance data, and the defined molecular mechanisms of resistance helped us to better understand AMR epidemiology. Comparative analysis with other GLASS-enrolled countries is possible owing to the harmonized system provided by GLASS.


Sign in / Sign up

Export Citation Format

Share Document