scholarly journals Commercial arbuscular mycorrhizal fungal inoculant failed to establish in a vineyard despite priority advantage

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11119
Author(s):  
Corrina Thomsen ◽  
Laura Loverock ◽  
Vasilis Kokkoris ◽  
Taylor Holland ◽  
Patricia A. Bowen ◽  
...  

Background Arbuscular mycorrhizal (AM) fungi associate with most plants and can increase nutrient uptake. As a result, commercial inoculants called “biofertilizers” containing AM fungi have been developed and marketed to increase plant performance. However, successful establishment of these inoculants remains a challenge, and may be negatively impacted by competition with fungi already present (priority effects). Perennial agriculture may be more amenable if inoculants can be successfully established on crops prior to field planting. Methods Here, we inoculate grapevine (Vitis vinifera) with a commercial inoculant in three treatments designed to manipulate the strength and direction of priority effects and quantified the abundance of the fungal strain before and after introduction using droplet digital PCR (ddPCR). Results We found that the introduced strain did not establish in any treatment, even with priority advantage, and inoculated vines did not differ in performance from non-inoculated vines. Fungal abundance was not greater than in pre-inoculation soil samples during any of the five years sampled and may have been impaired by high available phosphorus levels in the soil. This study highlights the need to understand and evaluate how the management of the agricultural system will affect establishment before introduction of “biofertilizers”, which is often unpredictable.

Agriculture ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 539
Author(s):  
Daniel Rosa ◽  
Antreas Pogiatzis ◽  
Pat Bowen ◽  
Vasilis Kokkoris ◽  
Andrew Richards ◽  
...  

(1) Background: Arbuscular mycorrhizal (AM) fungi are symbiotic organisms that help plants acquire nutrients from the soil in exchange for photosynthetic carbon. Commercial AM fungal inoculants are widely available and are used extensively in agriculture including wine grape production. However, positive growth responses from inoculants are more consistent in the greenhouse compared to the field. (2) Methods: We grew three grapevine rootstocks with and without an AM fungal inoculant in the greenhouse for one year, then they were transplanted to the field for two years. To quantify the establishment of the inoculant, we analyzed root samples with a digital PCR assay. (3) Results: We show that AM fungal inoculation increased biomass production only in the greenhouse. After two growing seasons in the field, the commercial inoculant colonized roots but did not increase biomass production compared to uninoculated rootstocks. (4) Conclusions: This study highlights that AM fungal inoculants do not always promote growth of grapevines in the field. Future research should focus on inoculant strains designed for viticulture applications and take rootstock into consideration to maximize their efficacy.


2017 ◽  
Vol 155 (10) ◽  
pp. 1565-1576
Author(s):  
M. TOBISA ◽  
Y. UCHIDA ◽  
S. IWASA ◽  
T. TSUKIYAMA ◽  
Y. ASANO ◽  
...  

SUMMARYThe present study investigated the dry matter yield (DMY) and arbuscular mycorrhizal (AM) colonization (internal hyphae, arbuscules, and vesicles) of two genotypes of zoysia grass (Zoysia japonica strain Aso and cv. Asagake) at three rates (10, 20 and 40 g N/m2/year) of application of digested slurry (DS) or mineral fertilizer. Soil chemical properties (available phosphorus concentration, pH and electrical conductivity (EC)) were also measured as factors associated with AM colonization. The fertilizer type (DS v. mineral fertilizer) had an effect on DMY depending on the plant genotypes but had little or no effect on AM colonization, and soil chemical properties, indicating that DS can be used as a substitute for mineral fertilizer; however, it is necessary to apply it taking into account the ratio of inorganic nitrogen (N). However, heavy DS application decreased colonization by internal hyphae. Furthermore, even at the lowest rate, the continuous application of DS decreased colonization by arbuscules and vesicles in both genotypes, which were associated with decreasing soil pH and increasing EC. The results suggest that zoysia grass should be fertilized with DS at a rate of <10 g N/m2/year in order to achieve a continuous association with AM fungi, although this range of N application is sub-optimal for zoysia grass production.


2012 ◽  
Vol 58 (1) ◽  
pp. 81-92 ◽  
Author(s):  
Mulan Dai ◽  
Chantal Hamel ◽  
Marc St. Arnaud ◽  
Yong He ◽  
Cynthia Grant ◽  
...  

The arbuscular mycorrhizal (AM) fungal resources present in wheat fields of the Canadian Prairie were explored using 454 pyrosequencing. Of the 33 dominant AM fungal operational taxonomic units (OTUs) found in the 76 wheat fields surveyed at anthesis in 2009, 14 clustered as Funneliformis – Rhizophagus, 16 as Claroideoglomus, and 3 as Diversisporales. An OTU of Funneliformis mosseae and one OTU of Diversisporales each accounted for approximately 16% of all AM fungal OTUs. The former was ubiquitous, and the latter was mainly restricted to the Black and Dark Brown Chernozems. AM fungal OTU community composition was better explained by the Chernozem great groups (P = 0.044) than by measured soil properties. Fifty-two percent of the AM fungal OTUs were unrelated to measured soil properties. Black Chernozems hosted the largest AM fungal OTU diversity and almost twice the number of AM fungal sequences seen in Dark Brown Chernozems, the great group ranking second for AM fungal sequence abundance. Brown Chernozems hosted the lowest AM fungal abundance and an AM fungal diversity as low as that seen in Gray soils. We concluded that Black Chernozems are most conducive to AM fungal proliferation. AM fungi are generally distributed according to Chernozem great groups in the Canadian Prairie, although some taxa are evenly distributed in all soil groups.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Noah C. Luecke ◽  
Austin J. Mejia ◽  
Kerri M. Crawford

AbstractCoastal dune restorations often fail because of poorly performing plants. The addition of beneficial microbes can improve plant performance, though it is unclear if the source of microbes matters. Here, we tested how native soil amendments and commercially available arbuscular mycorrhizal (AM) fungi influenced performance of Panicum amarum, a dominant grass on Texas coastal dunes. In a greenhouse experiment, we manipulated the identity of native soil amendments (from P. amarum, Uniola paniculata, or unvegetated areas), the presence of soil microbes in the native soil amendments (live or sterile), and the presence of the commercial AM fungi (present or absent). Native soils from vegetated areas contained 149% more AM fungal spores than unvegetated areas. The commercial AM fungi, when combined with previously vegetated native soils, increased aboveground biomass of P. amarum by 26%. Effects on belowground biomass were weaker, although the addition of any microbes decreased the root:shoot ratio. The origin of native soil amendments can influence restoration outcomes. In this case soil from areas with vegetation outperformed soil from areas without vegetation. Combining native soils with commercial AM fungi may provide a strategy for increasing plant performance while also maintaining other ecosystem functions provided by native microbes.


2020 ◽  
Vol 4 ◽  
Author(s):  
Varaidzo W. Chifetete ◽  
Joanna F. Dames

The potato (Solanum tuberosum L.) is an important tuber crop with high dietary value that could potentially help to alleviate malnutrition and hunger in Africa. However, production is expensive, with high fertilizer and pesticide demands that lead to environmental pollution, and tillage practices that negatively affect soil structure. Microorganisms of different types have increasingly been found to be useful as biofertilizers, and arbuscular mycorrhizal (AM) fungi are an important crop symbiont. AM fungi have been shown to increase tolerance of crop plants to drought, salinity and disease by facilitating water and nutrient acquisition and by improving overall soil structure. However, the establishment and maintenance of the symbioses are greatly affected by agricultural practices. Here, we review the benefits that AM fungi confer in potato production, discuss the role and importance of mycorrhiza helper bacteria, and focus on how AM fungal diversity and abundance can be affected by conventional agricultural practices, such as those used in potato production. We suggest approaches for maintaining AM fungal abundance in potato production by highlighting the potential of conservation tillage practices augmented with cover crops and crop rotations. An approach that balances weed control, nutrient provision, and AM fungal helper bacterial populations, whilst promoting functional AM fungal populations for varying potato genotypes, will stimulate efficient mycorrhizal interventions.


2020 ◽  
Author(s):  
Tiantian Gao ◽  
Zhongke Wang ◽  
Xinhua Lv ◽  
Guifang Li ◽  
Yaling He ◽  
...  

Abstract We investigated the rhizospheric arbuscular mycorrhizal (AM) fungi from the three medicinal licorice plants, i.e., Glycyrrhiza uralensis Fisch., Glycyrrhiza inflata Bat., and Glycyrrhiza glabra L. The AM fungi were reported to be affected by the host plant species as well as soil depth, physical, and chemical properties. We collected the rhizosphere from these licorice plants, from the soil layer with a depth of 0-20 cm, 20-40 cm, and 40-60 cm in the Xinjiang region. Furthermore, we employed the Illumina Miseq high-throughput sequencing platform to investigate the structure and diversity of these AM fungal communities. The soil physical and chemical properties were also evaluated to determine the relationship between the medicinal Glycyrrhiza rhizospheric AM fungi and the associated soil factors. In order to provide a reference for revealing the role of arbuscular mycorrhizal fungi in increasing the content of active components in cultivated licorice root, we isolated a total of 34 AM fungi that encompassed a phylum, a class, five (orders, families, and genus), and the Glomus and Paraglomus emerged as the dominant genus. We observed the highest diversity in the AM fungi in Glycyrrhiza uralensis Fisch. The Glycyrrhiza inflata showed the highest richness, whereas the Glycyrrhiza glabra showed the lowest richness and diversity in each soil layer. The plant species influenced the AM fungi more than the soil depth. The total phosphorus, available phosphorus, and organic matter in the soil prominently impacted the distribution of soil AM fungi. In contrast, the soil ammonium and nitrogen content had the lowest-impact on the AM fungi distribution. The genus Glomus was was found to be positively correlated with total phosphorus (P<0.001), and negatively correlated with total potassium (P<0.001), total salt (P<0.01), soil water content, and organic matter (P<0.05). The genus Paraglomus was found to be negatively correlated with the total phosphorus (P<0.001), whereas positively correlated with total potassium (P<0.001), total salt (P<0.001), organic matter (P<0.05), and fast-acting potassium (P<0.05). Besides, we found a positive correlation between the genus Diversispora and ammonium nitrogen (P<0.05), whereas the available phosphorus (P<0.05) and total salt (P<0.05) were negatively correlated with the genus Diversispora.


Fire ◽  
2018 ◽  
Vol 1 (3) ◽  
pp. 37
Author(s):  
Alícia Barraclough ◽  
Pål Olsson

Deforestation and the use of fire to clear land have drastic effects on ecosystem functioning and compromise essential ecosystem services, especially in low-income tropical countries such as Madagascar. We evaluated the effects of local slash-and-burn practices on soil nutrients and arbuscular mycorrhizal (AM) fungi abundance in a southwestern Madagascar forest. Nine sampling plot pairs were established along the border of a reserve within the Fiherenana–Manombo (pk-32) complex, where soil and seedling root samples of the endemic tree Didierea madagascariensis were taken. We analysed soil extractable PO43−, NH4+, and NO3− as well as total soil carbon and nitrogen. We analysed AM fungal abundance in soil and roots through fatty acid marker analysis (NLFA and PLFA 16:1ω5), spore extraction, and root staining. Slash-and-burn caused an increase in pH and doubled the plant available nutrients (from 7.4 to 13.1 µg PO43− g−1 and from 6.9 to 13.2 µg NO3− g−1). Total C and total N increased in deforested soil, from 0.6% to 0.84% and from 0.06% to 0.08%, respectively. There was a significant decline in AM fungi abundance in soil, with a decrease in soil NLFA 16:1ω5 from 0.2 to 0.12 nmol/g. AM fungi abundance in D. madagascariensis roots was also negatively affected and colonization decreased from 27.7% to 16.9% and NLFA 16:1ω5 decreased from 75.7 to 19 nmol/g. Together with hyphal network disruption, increased nutrient availability caused by burning is proposed as an explanation behind AM decline in soil and roots of D. madagascariensis. This is the first study to report the effects of slash-and-burn on AM symbiosis in Madagascar’s dry forests, with likely implications for other tropical and subtropical dryland forests worldwide where slash-and-burn is practiced.


2020 ◽  
Author(s):  
Kavita Chahal ◽  
Vaishali Gupta ◽  
Naveen Kumar Verma ◽  
Anand Chaurasia ◽  
Babita Rana

A sustainable agriculture is a type of agriculture that focuses on producing long-term crops and livestock without having any adverse effect on the environment. However, agricultural malpractices like excessive use of chemical fertilizers and pesticides, as well as climate change have aggravated the effects of biotic and abiotic stresses on crop productivity. These led to the degradation of ecosystem, leaving bad impacts on the soil qualities and water body environment. As an alternative to the rising agricultural energy, the use of Vesicular– Arbuscular Mycorrhizae (AM) may be a better option. Being natural root symbionts, AM provide essential inorganic nutrients to host plants, thereby improving its growth and yield even under stressed conditions. AM fungi can also potentially strengthen the adaptability of a plant to the changing environment, as a bio-fertilizer. The chapter provides a comprehensive up-to-date knowledge on AM fungi as a tool for sustainable agricultural system. Thus, further research focusing on the AM -mediated promotion of crop quality and productivity is needed.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 583
Author(s):  
Reda E. Abdelhameed ◽  
Nagwa I. Abu-Elsaad ◽  
Arafat Abdel Hamed Abdel Latef ◽  
Rabab A. Metwally

Important gaps in knowledge remain regarding the potential of nanoparticles (NPs) for plants, particularly the existence of helpful microorganisms, for instance, arbuscular mycorrhizal (AM) fungi present in the soil. Hence, more profound studies are required to distinguish the impact of NPs on plant growth inoculated with AM fungi and their role in NP uptake to develop smart nanotechnology implementations in crop improvement. Zinc ferrite (ZnFe2O4) NPs are prepared via the citrate technique and defined by X-ray diffraction (XRD) as well as transmission electron microscopy for several physical properties. The analysis of the XRD pattern confirmed the creation of a nanocrystalline structure with a crystallite size equal to 25.4 nm. The effects of ZnFe2O4 NP on AM fungi, growth and pigment content as well as nutrient uptake of pea (Pisum sativum) plants were assessed. ZnFe2O4 NP application caused a slight decrease in root colonization. However, its application showed an augmentation of 74.36% and 91.89% in AM pea plant shoots and roots’ fresh weights, respectively, compared to the control. Moreover, the synthesized ZnFe2O4 NP uptake by plant roots and their contents were enhanced by AM fungi. These findings suggest the safe use of ZnFe2O4 NPs in nano-agricultural applications for plant development with AM fungi.


Author(s):  
Yinli Bi ◽  
Linlin Xie ◽  
Zhigang Wang ◽  
Kun Wang ◽  
Wenwen Liu ◽  
...  

AbstractArbuscular mycorrhizal (AM) fungi can successfully enhance photosynthesis (Pn) and plants growth in agricultural or grassland ecosystems. However, how the symbionts affect species restoration in sunlight-intensive areas remains largely unexplored. Therefore, this study’s objective was to assess the effect of AM fungi on apricot seedling physiology, within a specific time period, in northwest China. In 2010, an experimental field was established in Shaanxi Province, northwest China. The experimental treatments included two AM fungi inoculation levels (0 or 100 g of AM fungal inoculum per seedling), three shade levels (1900, 1100, and 550 µmol m−2 s−1), and three ages (1, 3, and 5 years) of transplantation. We examined growth, Pn, and morphological indicators of apricot (Prunus sibirica L.) seedling performances in 2011, 2013, and 2015. The colonization rate in mycorrhizal seedlings with similar amounts of shade is higher than the corresponding controls. The mycorrhizal seedling biomass is significantly higher than the corresponding non-mycorrhizal seedling biomass. Generally, Pn, stomatal conductance (Gs), transpiration rate (Tr), and water use efficiency are also significantly higher in the mycorrhizal seedlings. Moreover, mycorrhizal seedlings with light shade (LS) have the highest Pn. WUE is increased in non-mycorrhizal seedlings because of the reduction in Tr, while Tr is increased in mycorrhizal seedlings with shade. There is a significant increase in the N, P, and K fractions detected in roots compared with shoots. This means that LS had apparent benefits for mycorrhizal seedlings. Our results also indicate that AM fungi, combined with LS, exert a positive effect on apricot behavior.


Sign in / Sign up

Export Citation Format

Share Document