scholarly journals Biochar application significantly affects the N pool and microbial community structure in purple and paddy soils

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7576 ◽  
Author(s):  
Shen Yan ◽  
Zhengyang Niu ◽  
Haitao Yan ◽  
Fei Yun ◽  
Guixin Peng ◽  
...  

Background The increasing demand for food production has resulted in the use of large quantities of chemical fertilizers. This has created major environmental problems, such as increased ammonia volatilization, N2O emission, and nitrogen (N) leaching from agricultural soil. In particular, the utilization rate of N fertilizer is low in subtropical southern parts of China due to high rainfall. This causes not only large financial losses in agriculture, but also serious environmental pollution. Methods In this study, 16S rDNA-based analysis and static-chamber gas chromatography were used to elucidate the effects of continuous straw biochar application on the N pool and bacteria environment in two typical soil types, purple and paddy soils, in southern China. Results Straw biochar application (1) improved the soil N pool in both rhizosphere and non-rhizosphere soils; (2) significantly reduced the emission of N2O, with no difference in emission between 1 and 2 years of application; (3) increased the abundance of N-processing bacteria in the soil and altered the bacterial community structure; and (4) improved the tobacco yield and N use efficiency in paddy soil. These findings suggest that, in southern China, the application of straw biochar can promote N transformation in purple and paddy soils and reduce the emission of the greenhouse gas N2O.

Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 554
Author(s):  
Jiangwen Nie ◽  
Lixia Yi ◽  
Heshui Xu ◽  
Zhangyong Liu ◽  
Zhaohai Zeng ◽  
...  

Chinese milk vetch (Astragalus sinicus L., vetch), a leguminous winter cover crop, has been widely adopted by farmers in southern China to boost yield of the succeeding rice crop. However, the effects of vetch on rice grain yield and nitrogen (N) use efficiency have not yet been well studied in the intensive double-cropped rice cropping systems. To fill this gap, we conducted a three-year field experiment to evaluate the impacts of the vetch crop on yields and N use efficiency in the subsequent early and late rice seasons. With moderate N input (100 kg N ha−1 for each rice crop), vetch cover significantly increased grain yields by 7.3–13.4% for early rice, by 8.2–10.4% for late rice, and by 8.6–11.5% for total annual rice production when compared with winter fallow. When rice crops received an N input of 200 kg N ha−1, vetch cover increased grain yields by 5.9–18.4% for early rice, by 3.8–10.1% for late rice, and by 6.2–11.3% for annual rice production. Moreover, comparable grain yields (11.9 vs. 12.0 Mg ha−1 for annual rice production) were observed between vetch cover with moderate N and fallow with added N fertilizer. Yield components analysis indicated that the increased tillering number was the main factor for the enhanced grain yields by vetch cover. Vetch cover with moderate and higher N input resulted in higher agronomic N use efficiency and applied N recovery efficiency compared with the fallow treatments. Here, our results showed that vetch as a winter cover crop can be combined with reduced N fertilizer input while maintaining high grain yields, thus gaining a more sustainable rice production system.


2013 ◽  
Vol 64 (10) ◽  
pp. 1020 ◽  
Author(s):  
V. O. Snow ◽  
P. N. Smale ◽  
M. B. Dodd

Ecological studies often suggest that natural grasslands with high species diversity will grow more biomass and leach less nitrogen (N). If this diversity effect also applies to fertilised and irrigated pastures with controlled removal of herbage, it might be exploited to design pastures that can assist the dairy industry to maintain production while reducing N leaching losses. The purpose of this study was to test whether pasture mixtures with a high functional diversity in ryegrass traits will confer on the system higher water- and N-use efficiency. The hypothesis was tested using a process-based model in which pasture mixtures were created with varying levels of diversity in ryegrass traits likely to affect pasture growth. Those traits were: the winter- or summer-dominance of growth, the ability of the plant to intercept radiation at low pasture mass, and rooting depth. Pasture production, leaching and water- and N-use efficiency were simulated for management typical of a dairy pasture. We found that the performance of the diverse ryegrass–clover mixtures was more strongly associated with the performance of the individual components than with the diversity across the components. Diverse pasture mixtures may confer other benefits, e.g. pest or disease resistance and pasture persistence. The testing here was within a selection of ryegrasses, and the greater possible diversity across species may produce different effects. However, these results suggest that highly performing pastures under fertilised and irrigated grazed conditions are best constructed by selecting components that perform well individually than by deliberately introducing diversity between components.


2014 ◽  
Vol 387 (1-2) ◽  
pp. 413-424 ◽  
Author(s):  
Shamina I. Pathan ◽  
Maria Teresa Ceccherini ◽  
Giacomo Pietramellara ◽  
Markus Puschenreiter ◽  
Laura Giagnoni ◽  
...  

2016 ◽  
Vol 219 ◽  
pp. 93-100 ◽  
Author(s):  
Ping Zhou ◽  
Hao Sheng ◽  
Yong Li ◽  
Chengli Tong ◽  
Tida Ge ◽  
...  

2017 ◽  
Vol 180 (6) ◽  
pp. 648-658 ◽  
Author(s):  
Jing Wang ◽  
Ying Zhao ◽  
Jinbo Zhang ◽  
Wei Zhao ◽  
Christoph Müller ◽  
...  

2002 ◽  
Vol 12 (1) ◽  
pp. 19-25 ◽  
Author(s):  
D. Neilsen ◽  
G.H. Neilsen

In irrigated apple orchard systems, the magnitude and timing of plant demand for nitrogen (N) and retention of N in the root zone to allow root interception are important factors for efficient management of N fertilizer. Results from five experiments in high-density plantings of apple (Malus domestica) on dwarfing (`Malling 9') rootstocks are reported. All experimental plots received daily drip irrigation and N applied through the irrigation system (fertigation) with different regimes according to experimental design. Labelled fertilizer applications, whole tree excavation and partitioning and removal of N in fruit and senescent leaves were used to assess tree N demand. Nitrogen requirements ranged from 8 to 40 lb/acre (8.8 to 44 kg·ha-1) over the first 6 years after planting and N use efficiency was often low (<30%), likely because supply exceeded demand. Annual growth is supported by N remobilized from storage and taken up by roots. Root uptake of labelled fertilizer was negligible during early spring and the commencement of rapid uptake was associated with the end of remobilization and the start of shoot growth, rendering prebloom fertilizer applications ineffective. Thus timing of N supply to periods of high demand is crucial for improving efficiency. Comparisons were made to determine the effects on N leaching and tree N utilization of irrigation scheduled to meet evaporative demand and irrigation applied at a fixed rate. Water losses beneath the root zone were greater for fixed rate than scheduled irrigation during the coolest months (May, June and September) of irrigation application. Nitrogen leaching followed a similar pattern during times of N fertigation (May and June). Greater N use efficiency was also measured for trees when irrigation was scheduled to meet evaporative demand rather than applied at a fixed rate. The most N efficient management system was for trees receiving a low [50 ppm (mg·L-1)] fertigated N supply, at 0 to 4 or 4 to 8 weeks following bloom with scheduled irrigation.


Author(s):  
Chang Tian ◽  
Xuan Zhou ◽  
Zheli Ding ◽  
Qiang Liu ◽  
Guixian Xie ◽  
...  

AbstractControlled-release nitrogen fertilizer (CRNF) can effectively enhance crop yields and raise the efficiency of nitrogen fertilizer in agroecosystems. In the present study, the volatilization of NH3 was determined by airflow enclosure chamber technique after the application of different CRNF rates in double-cropping rice fields in southern China for continuous 3 years. The early and late season rice (ESR and LSR) were cultivated each year. The results showed that the total NH3 volatilization losses ranged from 25 to 56 kg N ha−1 in ESR and from 32 to 61 kg N ha−1 in LSR. The loss of N to the total applied N ranged from 12 to 29% in ESR and from 12 to 27% in LSR. The application of CRNF significantly reduced the cumulative NH3 volatilization losses by 20–43% for ESR and by 20–32% for LSR compared with conventional urea application. CRNF in LSR was less effective to reduce NH3 volatilization than that in ESR. Furthermore, the application of 80% of N rate in the form of CRNF gave higher grain yield and apparent nitrogen recovery efficiency (ANRE) than that of application of 100% of N rate from conventional urea. CRNF can effectively reduce NH3 volatilization, and increase rice yield and ANRE. Considering higher price of CRNF, the application of CRNF at lower (20% applied N) rate than conventional urea in LSR may be a reasonable fertilization strategy for improving N use efficiency, environment effectiveness, and sustaining the development of rice production systems in double-cropping rice.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 515
Author(s):  
Ying Ouyang ◽  
Gary Feng ◽  
Heidi Renninger ◽  
Theodor D. Leininger ◽  
Prem Parajuli ◽  
...  

Eucalyptus is one of the fastest growing hardwoods for bioenergy production. Currently, few modeling tools exist to simultaneously estimate soil hydrological processes, nitrogen (N) uptake, and biomass production in a eucalyptus plantation. In this study, a STELLA (Structural Thinking and Experiential Learning Laboratory with Animation)-based model was developed to meet this need. After the model calibration and validation, a simulation scenario was developed to assess eucalyptus (E. grandis × urophylla) annual net primary production (ANPP), woody biomass production (WBP), water use efficiency (WUE), and N use efficiency (NUE) for a simulation period of 20 years. Simulation results showed that a typical annual variation pattern was predicted for water use, N uptake, and ANPP, increasing from spring to fall and decreasing from fall to the following winter. Overall, the average NUE during the growth stage was 700 kg/kg. To produce 1000 kg eucalyptus biomass, it required 114.84 m3 of water and 0.92 kg of N. This study suggests that the STELLA-based model is a useful tool to estimate ANPP, WBP, WUE, and NUE in a eucalyptus plantation.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1459
Author(s):  
Heba S. A. Salama ◽  
Ali I. Nawar ◽  
Hassan E. Khalil ◽  
Ahmed M. Shaalan

The sequence of the preceding crops in a no-tillage farming system, could interact with the integrated use of mineral and organic nitrogen (N) sources in a way that improves the growth and productivity of the terminal maize crop, meanwhile, enhancing its N use efficiency (NUE). In the current study, six legume-cereal crop sequences, including faba bean, soybean, Egyptian clover, wheat, and maize were evaluated along two experimental rotations that ended up by planting the terminal maize crop. In addition, the effects of applying variable mineral nitrogen (MN) rates with and without the incorporation of farmyard manure (FYM) on the productive performance of maize and its NUE were tested. The field experiments were conducted in a no-tillage irrigated farming system in Northern Egypt, a location that is characterized by its arid, Mediterranean climate. Results revealed that increasing the legume component in the evaluated crop sequences, up to 75%, resulted in improved maize ear leaf area, 1000-grain weight, and harvest index, thus, a higher final grain yield, with the inclusion of Egyptian clover was slightly better than faba bean. Comparing the crop sequences with 50% legume contribution uncovered the positive effects of soybean preceding crop on the terminal maize crop. Substituting 25% of the applied MN with FYM resulted in similar maize yields to the application of the equivalent 100% MN rates. The fertilizer treatments significantly interacted with the crop sequences in determining the maize grain yield, where the highest legume crop contribution in the crop sequence (75%) equalized the effects of the different fertilizer treatments on maize grain yield. The integrated use of FYM with MN in maize fertilization improved the NUE compared to the application of MN alone. Comparing fertilization treatments with similar MN content, with and without FYM, revealed that the difference in NUE was attributed to the additional amount of FYM. In similar conditions to the current study, it is recommended to grow faba bean two years before maize, while Egyptian clover could be grown directly preceding maize growth, with frequent inclusion of soybean in the sequence, this could be combined with the application of an average of 200 kg MN ha−1 in addition to FYM.


Sign in / Sign up

Export Citation Format

Share Document