scholarly journals Efficacy of Trichoderma Fortified Organic Amendments on Fusarium Wilt Suppression, Growth and Yield of Eggplant

Author(s):  
V. Govardhan Rao ◽  
D. N. Dhutraj ◽  
K. D. Navgire ◽  
K. T. Apet

Trichoderma harzianum is commonly used as effective biological control agent against phytopathogens especially the soil-borne fungi while some isolates are able to ameliorate plant growth. In the present study, Trichoderma fortified with different organic amendments were evaluated to reduce the pre-emergence and post-emergence seedling mortality, diseases of stem and root of eggplant caused by Fusarium oxysporum f. sp. melongenae, a soil-borne fungal pathogen. Two experiments were set up, one at pot culture and second in the field under natural epiphytotic conditions. Among the nine Trichoderm harzianum fortified amendments tested, neem seed cake recorded significant and superior effect as pre-sowing soil application against Fusarium wilt with respect to seed germination (92.33%), pre-emergence seed rot (7.66%) and post-emergence seedling mortality (15.33%) in pot culture. However, cotton cake recorded least efficacy in all respect. Similar trend observed in wilt incidence under field experiments during autumn 2018 (17.47%) and 2019 (18.60%) with T. harzianum fortified neem cake soil application against Fusarium wilt with mean inhibition of disease incidence (58.43%) and also observed excellent enhancement of mean yield (54.63%). It is observed that organic amendment at higher concentrations further increase the microbial populations and stimulate the microbial activity in soil against Fusarium oxysporum resulted to decrease the pathogen populations. Moreover, yield and yield related attributes increased remarkably due to fortified amendments providing adequate nutrient reservoir to the bioagents thereby enhancing its survival in a hostile environment.

2021 ◽  
Vol 2 (2) ◽  
pp. 124-137
Author(s):  
S. Chaterjee ◽  
Rayhanur Jannat ◽  
M. M. Hossain ◽  
M. R. Amin ◽  
M. T. Rubayet

Chitosan is a biodegradable natural compound that has a great potentiality in agriculture for controlling plant diseases. An attempt was made to control Fusarium wilt caused by Fusarium oxysporum f. sp. melongenae under inoculated field condition and increase the growth and yield of brinjal by chitosan. Before setting the experiments in the field, preliminary laboratory experiments were carried out to select virulent isolate and effective dose of chitosan against the mycelial growth of the selected pathogen. F. oxysporum f. sp. melongenae isolate F-1 was found to be the most virulent on brinjal in pathogenicity test. Chitosan @ 1.0% concentration was appeared to be the highest inhibitory to the test pathogen at in vitro condition. Additionally, seed treatment with 1.0% chitosan for 12 hrs resulted in the highest increased in germination and seedling growth of brinjal. The field experiment was conducted following Randomized Complete Block Design (RCBD) with four treatments. No treatment was given in T1, the pathogen was inoculated in T2 and seed treatment and soil amendment with 1.0% chitosan was done in T3 and T4, respectively, in test pathogen inoculated condition. Application of 1.0% chitosan as a seed treatment (T3) or soil amendment (T4) significantly reduced pre- and post-emergence seedling mortality, incidence and severity of Fusarium wilt as well as enhanced germination percentage, plant growth and yield of brinjal. On the contrary, pre-emergence and post-emergence seedling mortality, disease incidence and severity of Fusarium wilt were highest in treatment T2 where the soil was inoculated with pathogen without chitosan. Therefore, chitosan could be used against this vascular disease as an alternative to inorganic fungicides and augment yield.


2020 ◽  
Vol 21 (1) ◽  
pp. 13-18 ◽  
Author(s):  
Nathan F. Miller ◽  
Jeffrey R. Standish ◽  
Lina M. Quesada-Ocampo

Field experiments were conducted in 2015 and 2016 to determine the effects of drench or drench-plus-foliar applications of prothioconazole and pydiflumetofen on Fusarium wilt (caused by Fusarium oxysporum f. sp. niveum; FON) of watermelon (Citrullus lanatus var. lanatus). In both years, all fungicide treatments reduced final disease incidence, final severity, and area under the disease progress curve, regardless of application rate or method. Yield data were collected in 2016, and both number and weight of marketable fruit were greatest in plots treated with pydiflumetofen as a drench-plus-foliar application at either application rate. Additional experiments were conducted to characterize sensitivity distributions of 48 isolates of FON from North Carolina to prothioconazole and pydiflumetofen. Mean prothioconazole EC50 values ranged from 0.10 to 0.55 µg/ml, and mean pydiflumetofen EC50 values ranged from 0.34 to 1.88 µg/ml. The results presented here validate pydiflumetofen as an effective management option for Fusarium wilt of watermelon, confirm previously observed efficacy of prothioconazole, and provide current evidence of pathogen sensitivity to these fungicides in North Carolina.


1987 ◽  
Vol 33 (5) ◽  
pp. 349-353 ◽  
Author(s):  
T. C. Paulitz ◽  
C. S. Park ◽  
R. Baker

Nonpathogenic isolates of Fusarium oxysporum were obtained from surface-disinfested, symptomless cucumber roots grown in two raw (nonautoclaved) soils. These isolates were screened for pathogenicity and biological control activity against Fusarium wilt of cucumber in raw soil infested with Fusarium oxysporum f. sp. cucumerinum (F.o.c.). The influence of three isolates effective in inducing suppressiveness and three ineffective isolates on disease incidence over time was tested. The effective isolates reduced the infection rate (R), based on linear regressions of data transformed to loge (1/1 – y). Effective isolate C5 was added to raw soil infested with various inoculum densities of F.o.c. In treatments without C5, the increase in inoculum densities of F.o.c. decreased the incubation period of wilt disease, but there was no significant difference in infection rate among the inoculum density treatments. Isolate C5 reduced the infection rate at all inoculum densities of F.o.c. Various inoculum densities of C5 were added to raw soils infested with 1000 cfu/g of F.o.c. In the first trial, infection rates were reduced only in the treatment with 10 000 cfu/g of C5; in the second trial, infection rates were reduced in treatments with 10 000 and 30 000 cfu/g of C5.


Plant Disease ◽  
2014 ◽  
Vol 98 (10) ◽  
pp. 1326-1332 ◽  
Author(s):  
Anthony P. Keinath ◽  
Richard L. Hassell

Fusarium wilt of watermelon, caused by the soilborne fungal pathogen Fusarium oxysporum f. sp. niveum race 2, is a serious, widespread disease present in major watermelon-growing regions of the United States and other countries. ‘Fascination,’ a high yielding triploid resistant to race 1, is grown in southeastern states in fields that contain a mixture of races 1 and 2. There is some benefit to using cultivars with race 1 resistance in such fields, even though Fascination is susceptible to Fusarium wilt caused by race 2. Experiments in 2012 and 2013 were done in fields infested primarily with race 2 and a mixture of races 1 and 2, respectively. Fascination was grafted onto four rootstock cultivars: bottle gourd (Lagenaria siceraria) ‘Macis’ and ‘Emphasis’ and interspecific hybrid squash (Cucurbita maxima× C. moschata) ‘Strong Tosa’ and ‘Carnivor.’ Nongrafted and self-grafted Fascination were used as susceptible control treatments. In both experiments, mean incidence of plants with symptoms of Fusarium wilt was ≥52% in the susceptible control treatments and ≤6% on the grafted rootstocks. Disease incidence did not differ between rootstock species or cultivars. In both years, Fascination grafted onto Strong Tosa and Macis produced more marketable-sized fruit than the susceptible control treatments. Grafted Emphasis and Carnivor also produced more fruit than the control treatments in 2012. The cucurbit rootstocks suppressed Fusarium wilt caused by race 2 and increased marketable yield of triploid watermelon grown in infested soil.


Author(s):  
Chandar Kala ◽  
S. Gangopadhyay ◽  
S. L. Godara

Antagonistic potentiality of Trichoderma viride, T. harzianum and Pseudomonas fluorescens were evaluated against Fusarium oxysporum f. sp. ciceri under in vivo conditions. The effect of organic amendments viz; farm yard manure, vermicompost and mustard cake on disease control potentiality of test antagonists against chickpea wilt and on population dynamics of the antagonists and pathogen in soil was also studied. Maximum inhibition of mycelial growth of F. o. f. sp. ciceri was recorded in presence of P. fluorescens (%) followed by T. harzianum (%) and T. viride (%). Seed treatment with P. fluorescens was more effective in suppressing the disease incidence as compared to T. harzianum and T. viride. The disease control efficacy and population dynamics of all the three test antagonists was enhanced in response to application of organic amendments. Among the three organic amendments tested, mustard cake was most effective in enhancing the disease control potentiality of these antagonists.


Plant Disease ◽  
2006 ◽  
Vol 90 (3) ◽  
pp. 365-374 ◽  
Author(s):  
Blanca B. Landa ◽  
Juan A. Navas-Cortés ◽  
María del Mar Jiménez-Gasco ◽  
Jaacov Katan ◽  
Baruch Retig ◽  
...  

Use of resistant cultivars and adjustment of sowing dates are important measures for management of Fusarium wilt in chickpeas (Cicer arietinum). In this study, we examined the effect of temperature on resistance of chickpea cultivars to Fusarium wilt caused by various races of Fusarium oxysporum f. sp. ciceris. Greenhouse experiments indicated that the chickpea cultivar Ayala was moderately resistant to F. oxysporum f. sp. ciceris when inoculated plants were maintained at a day/night temperature regime of 24/21°C but was highly susceptible to the pathogen at 27/25°C. Field experiments in Israel over three consecutive years indicated that the high level of resistance of Ayala to Fusarium wilt when sown in mid- to late January differed from a moderately susceptible reaction under warmer temperatures when sowing was delayed to late February or early March. Experiments in growth chambers showed that a temperature increase of 3°C from 24 to 27°C was sufficient for the resistance reaction of cultivars Ayala and PV-1 to race 1A of the pathogen to shift from moderately or highly resistant at constant 24°C to highly susceptible at 27°C. A similar but less pronounced effect was found when Ayala plants were inoculated with F. oxysporum f. sp. ciceris race 6. Conversely, the reaction of cultivar JG-62 to races 1A and 6 was not influenced by temperature, but less disease developed on JG-62 plants inoculated with a variant of race 5 of F. oxysporum f. sp. ciceris at 27°C compared with plants inoculated at 24°C. These results indicate the importance of appropriate adjustment of temperature in tests for characterizing the resistance reactions of chickpea cultivars to the pathogen, as well as when determining the races of isolates of F. oxysporum f. sp. ciceris. Results from this study may influence choice of sowing date and use of chickpea cultivars for management of Fusarium wilt of chickpea.


2018 ◽  
Vol 42 (4) ◽  
pp. 599-607
Author(s):  
L Yasmin ◽  
MA Ali ◽  
FN Khan

The efficacy of fungicides in controlling Fusarium wilt of gladiolus was studied at Horticulture Research Centre (HRC), Bangladesh Agricultural Research Institute (BARI), Gazipur during 2010-2012 following RCB design with four replications. Six fungicides such as Bavistin (0.1%), Provax (0.2%), Mancozeb (0.2%), Rovral (0.2%), Chlorax (10%) and Cupravit (0.7%) were evaluated against the Fusarium wilt disease of gladiolus (Fusarium oxysporum f. sp. gladioli) under naturally infested field condition. Bavistin was very effective in reducing the disease incidence and thereby resulting maximum corm germination (99.98%), spike length (73.90 cm), rachis length (43.70 cm), florets spike-1 (12.63), flower sticks plot-1 (38.75) and corm plot-1 (60.23) and cormel yield ha-1 (2.51 t) of gladiolus. Provax and Cupravit were also effective in inhibiting the disease incidence as well as better spike length, rachis length, florets spike-1, no of flower sticks, corm and cormel yield.Bangladesh J. Agril. Res. 42(4): 599-607, December 2017


2021 ◽  
Vol 32 (1) ◽  
pp. 31-42
Author(s):  
A Shirin ◽  
- Md Hossain ◽  
MH Ar Rashid ◽  
MB Meah

The research work was done to assess the postharvest soil fungal population and to find out the relation between population dynamics of Trichoderma and soil borne disease of 41 eggplant cultivars. Soil samples collected from IPM lab germplasm maintenance field at post-harvest stage were analyzed for microbes in dilution plate technique. Fungal colonies appeared in each plate were counted and made their average. Incidence and severity of Fusarium wilt and Sclerotium collar rot in the plot of 41 eggplant varieties were recorded at flowering-fruiting stage. The highest total soil fungal population was estimated from the plot soil of eggplant var. Singnath S (IPM- 42) that was 40.75×104. The var. Bijoy had the lowest fungal population that was 7.5×104. A comparison between Trichoderma population and other fungal population was made. Different eggplant cultivars had variation in the population of two important soil fungi- Trichoderma and Fusarium. The total populations of Trichoderma and Fusarium in the plot soil of 41 eggplant varieties were 129.75 and 348.75 × 104 per gram of soil, respectively. The average number of colonies of Trichoderma varied with the range (1-8.25) per plate. Fusarium varied with the range from (2-22.50). In 20 important eggplant varieties out of 41, both Fusarium wilt and Sclerotium collar rot incidence ranged between 0.00 to 40.00%. The variety Puta begun had the highest incidence of Fusarium wilt with the highest soil population of Fusarium oxysporum against the absence of Trichoderma harzianum. The disease incidence at flowering-fruiting stage was negatively correlated with the population of Trichoderma. Disease severity decreased with the increase in Trichoderma population. Increase of Trichoderma population, decreased the population of other fungi (Fusarium oxysporum and Sclerotium rolfsii). These results are clearly indicating that Trichoderma might have the antagonistic potential and might contribute to the reduction of incidence of soil-borne diseases. Progressive Agriculture 32 (1): 31-42, 2021


HortScience ◽  
2002 ◽  
Vol 37 (7) ◽  
pp. 1069-1073 ◽  
Author(s):  
R. Cohen ◽  
C. Horev ◽  
Y. Burger ◽  
S. Shriber ◽  
J. Hershenhorn ◽  
...  

The effect of Cucurbita and melon rootstocks on the horticultural and pathological performance of grafted Fusarium-susceptible melons was studied in four field experiments conducted in Fusarium-infested and Fusarium-free soils. The melon/melon combinations performed better than the melon/Cucurbita combinations regarding yield and disease control. In the 1999 experiment conducted in infested soil, Fusarium wilt symptoms were observed only in the nongrafted susceptible melons whereas all grafted combinations were symptom-free. In the 2000 experiment, nongrafted susceptible melons were totally wilted, whereas disease incidence in the melon/melon combinations and in one of the melon/Cucurbita combinations was low. The response of grafted plants to Fusarium wilt was also affected by the susceptibility of the scion. Among nongrafted melon cv. Ananas Ein Dor and those grafted onto Brava rootstock, 82% and 20%, were diseased, respectively, compared with only 36% and 0%, of the nongrafted and grafted `Ofir' melons, respectively. Negligible quantities of fruit were harvested from the nongrafted plants grown in infested soil, whereas high and moderate yields were obtained from melons grafted onto melon and Cucurbita rootstocks, respectively. The yield of the nongrafted melons in Fusarium-free soils were similar to those of all the grafted plant combinations. Susceptible melon scions grafted onto resistant melon rootstocks were less colonized by F. oxysporum f. sp. melonis than the same melons grafted onto the Cucurbita rootstocks.


2018 ◽  
Vol 43 (1) ◽  
pp. 13-23
Author(s):  
L Yasmin ◽  
MA Ali ◽  
FN Khan

Integrated management of Fusarium wilt of gladiolus was studied at Horticulture Research Centre (HRC), Bangladesh Agricultural Research Institute (BARI), Gazipur during 2011-2013 following RCB design with four replications. Seven treatment such as (1) Corm treated with Bavistin @ 0.1% for 15 minutes, (2) Corm treated with hot water @ 54oc for 5 minutes, (3) Corm treated with hot water @ 52oc for 10 minutes, (4) Poultry refuse @ 5t/ha, (5) Mustard oil cake @ 600 kg/ha, (6) Bio-pesticide @ 64kg/ha, (7) Bavistin @ 0.1% as soil drenching were evaluated in nine different combinations against the Fusarium wilt of gladiolus (Fusarium oxysporum f. sp. gladioli) under naturally infested field condition. Corm treated with Bavistin (0.1%) for 15 minutes + Poultry refuse @ 5t/ha in soil application 25 days before corm sowing + Bavistin @ 0.1% as soil drenching at 45 days after corm sowing gave best integrated management option for reducing Fusarium wilt of gladiolus and thereby resulting maximum germination, spike length, rachis length, florets spike-1, flower sticks, corm and comel yield. Besides, integration of Bavistin (0.1%) as corm treatment for 15 minutes + Mustard oil cake @ 600 kg/ha in soil application 25 days before corm sowing + Bavistin (0.1%) as soil drenching at 45 days after corm sowing was also better option for combating Fusarium wilt of gladiolus. The alternate option was integration of Bavistin (0.1%) as corm treatment for 15 minutes + Bio-pesticide in soil application 7 days before corm sowing + Bavistin (0.1%) as soil drenching at 45 days after corm sowing was effective against the disease incidence as well as better spike length, rachis length, florets spike-1, flower sticks, corm and cormel yield.Bangladesh J. Agril. Res. 43(1): 13-23, March 2018


Sign in / Sign up

Export Citation Format

Share Document