scholarly journals Investigating the Thermal and Mechanical Performance of Polylactic Acid (PLA) Reinforced with cellulose, wood fibers and Copolymer

2017 ◽  
Vol 04 (03) ◽  
pp. 25-32
Author(s):  
Hassan K. Langat ◽  
Kiril Dimitrov ◽  
Michael Herzog ◽  
Peter Muchiri ◽  
James Keraita
Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1124
Author(s):  
Zhifang Liang ◽  
Hongwu Wu ◽  
Ruipu Liu ◽  
Caiquan Wu

Green biodegradable plastics have come into focus as an alternative to restricted plastic products. In this paper, continuous long sisal fiber (SF)/polylactic acid (PLA) premixes were prepared by an extrusion-rolling blending process, and then unidirectional continuous long sisal fiber-reinforced PLA composites (LSFCs) were prepared by compression molding to explore the effect of long fiber on the mechanical properties of sisal fiber-reinforced composites. As a comparison, random short sisal fiber-reinforced PLA composites (SSFCs) were prepared by open milling and molding. The experimental results show that continuous long sisal fiber/PLA premixes could be successfully obtained from this pre-blending process. It was found that the presence of long sisal fibers could greatly improve the tensile strength of LSFC material along the fiber extension direction and slightly increase its tensile elongation. Continuous long fibers in LSFCs could greatly participate in supporting the load applied to the composite material. However, when comparing the mechanical properties of the two composite materials, the poor compatibility between the fiber and the matrix made fiber’s reinforcement effect not well reflected in SSFCs. Similarly, the flexural performance and impact performance of LSFCs had been improved considerably versus SSFCs.


Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 349 ◽  
Author(s):  
Ji-Won Park ◽  
Jae-Ho Shin ◽  
Gyu-Seong Shim ◽  
Kyeng-Bo Sim ◽  
Seong-Wook Jang ◽  
...  

In recent years, there has been an increasing need for materials that are environmentally friendly and have functional properties. Polylactic acid (PLA) is a biomass-based polymer, which has attracted research attention as an eco-friendly material. Various studies have been conducted on functionality imparting and performance improvement to extend the field of application of PLA. Particularly, research on natural fiber-reinforced composites have been conducted to simultaneously improve their environmental friendliness and mechanical strength. Research interest in hybrid composites using two or more fillers to realize multiple functions are also increasing. Phase change materials (PCMs) absorb and emit energy through phase transition and can be used as a micro encapsulated structure. In this study, we fabricated hybrid composites using microcapsulated PCM (MPCM) and the natural fibrous filler, kenaf. We aimed to fabricate a composite material with improved endothermic characteristics, mechanical performance, and environmental friendliness. We analyzed the endothermic properties of MPCM and the structural characteristics of two fillers and finally produced an eco-friendly composite material. The PCM and kenaf contents were varied to observe changes in the performance of the hybrid composites. The endothermic properties were determined through differential scanning calorimetry, whereas changes in the physical properties of the hybrid composite were determined by measuring the mechanical properties.


2021 ◽  
Vol 2120 (1) ◽  
pp. 012039
Author(s):  
V Sekar ◽  
S Y Eh Noum ◽  
S Sivanesan ◽  
A Putra ◽  
Dg H Kassim ◽  
...  

Abstract In recent times, Additive Manufacturing (AM) has been applied rapidly in almost all fields. This study was conducted to apply the additive manufacturing into an acoustic application by 3D printing the Micro-Perforated Panels (MPP) through Fused Deposition Modelling (FDM) made of Polylactic Acid (PLA) reinforced with wood fibers. MPP were fabricated by altering its perforation volume. Later, the effect of perforation volume on acoustic absorption of the fabricated MPP was measured using the two-microphone impedance tube method as per ISO 10534-2 standard. The result shows altering the perforation volume affects the acoustic absorption of the MPP. MPP with a thickness of 2 mm and a perforation diameter of 0.2 mm shows the maximum sound absorption coefficient of 0.93 at 2173 Hz. It is made possible to absorb the 3D printed MPP made of natural fiber reinforced composite at different spectrums by altering the perforation volume.


Author(s):  
E. H. Agung ◽  
M. H. M. Hamdan ◽  
Januar Parlaungan Siregar ◽  
D. Bachtiar ◽  
C. Tezara ◽  
...  

Fast-growing scientific work is focusing on alternative sources to replace modern synthetic fibre materials due to the adverse effects caused by petroleum-based materials. Natural fibre possesses high potential as a replacement for synthetic fibre and petroleum-based products. These materials are not only greener and environmental-friendly, but also safe for human health. As such, this study investigated the influence of compatibilising agent of maleated anhydride polyethylene (MAPE) on mechanical performance of pineapple leaf fibre (PALF) reinforced polylactic acid (PLA). The raw materials, such as PALF, PLA, and MAPE, were mixed by using a hot roller mixer machine and hot compression moulding at 190ºC. The specimens were then tested for water absorption and flexibility. The specimens were submerged in water for 0, 7, 14, and 21 days. Three types of tests were conducted, namely water absorption, tensile, and flexural assessments. The results of water absorption, tensile, and flexural tests for the untreated PALF composite (UPALF) and treated PLAF composite (TPALF) were recorded and explained. As a conclusion, composite materials based on hydrophilic natural fibre may reduce the tensile and flexural properties of the composite.


Author(s):  
Sudhir Kumar ◽  
Rupinder Singh ◽  
TP Singh ◽  
Ajay Batish

In this work, an effort has been made for multimaterial three-dimensional printing of functionally graded prototypes of polylactic acid matrix (tensile specimens as per ASTM D638 type IV) followed by characterization of mechanical and surface properties. The work is an extension of previous reported studies on twin-screw extrusion process for the preparation of multimaterial wires as feedstock filaments in possible three-dimensional printing applications. The results of the study suggest that the highest peak strength (46.28 MPa) and break strength (41.65 MPa) was obtained for multimaterial three-dimensional printed samples at infill density 100%, infill angle 45°, and infill speed of 90 mm/s on commercial open source fused deposition modeling setup. Further surface hardness measurements performed on two extreme surfaces (top surface comprising magnetite (Fe3O4)-reinforced polylactic acid and bottom with polylactic acid without any reinforcement) revealed that the hardness for the bottom layer was more than the hardness for the top layer. From fractured surface analysis (using photomicrographs), it has been observed that the three-dimensional printed samples with low infill density resulted into more void formation due to which the performance while mechanical testing was poor in comparison to samples printed with higher infill density. The results are also supported by rendered images of photomicrographs, which revealed that high roughness value of samples printed with low infill density was also one of the reasons for poor mechanical performance of multimaterial three-dimensional printed functionally graded prototypes.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5405
Author(s):  
Matthias Jakob ◽  
Jakob Gaugeler ◽  
Wolfgang Gindl-Altmutter

Partial delignification and densification provide a pathway to significant improvement in the mechanical performance of wood. In order to elucidate potential effects of this treatment on the mechanical anisotropy of wood, partially delignified and densified spruce wood veneers were characterized at varying degrees of off-axis alignment. While the tensile strength and the modulus of elasticity (MOE) were clearly improved in parallel to the axis of wood fibers, this improvement quickly leveled off at misalignment angles ≥30°. For transverse tensile strength, the performance of alkaline-treated and densified wood was even inferior to that of untreated wood. Microscopic examination revealed the presence of microscopic cracks in treated wood, which are assumed to be responsible for this observation. It is concluded that impaired transverse tensile properties are a weakness of partially delignified and densified wood and should be considered when a potential usage in load-bearing applications is intended.


Sign in / Sign up

Export Citation Format

Share Document