scholarly journals Weaving of bacterial cellulose by the Bcs secretion systems

Author(s):  
Wiem Abidi ◽  
Lucía Torres-Sánchez ◽  
Axel Siroy ◽  
Petya Violinova Krasteva

Abstract Cellulose is the most abundant biological compound on Earth and while it is the predominant building constituent of plants, it is also a key extracellular matrix component in many diverse bacterial species. While bacterial cellulose was first described in the 19th century, it was not until this last decade that a string of structural works provided insights into how the cellulose synthase BcsA, assisted by its inner-membrane partner BcsB, senses c-di-GMP to simultaneously polymerize its substrate and extrude the nascent polysaccharide across the inner bacterial membrane. It is now established that bacterial cellulose can be produced by several distinct types of cellulose secretion systems and that in addition to BcsAB, they can feature multiple accessory subunits, often indispensable for polysaccharide production. Importantly, the last years mark significant progress in our understanding not only of cellulose polymerization per se, but also of the bigger picture of bacterial signaling, secretion system assembly, biofilm formation and host tissue colonization, as well as of structural and functional parallels of this dominant biosynthetic process between the bacterial and eukaryotic domains of life. Here we review current mechanistic knowledge on bacterial cellulose secretion with focus on the structure, assembly and cooperativity of Bcs secretion system components.

mBio ◽  
2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Arwen E. Frick-Cheng ◽  
Tasia M. Pyburn ◽  
Bradley J. Voss ◽  
W. Hayes McDonald ◽  
Melanie D. Ohi ◽  
...  

ABSTRACT Bacterial type IV secretion systems (T4SSs) can function to export or import DNA, and can deliver effector proteins into a wide range of target cells. Relatively little is known about the structural organization of T4SSs that secrete effector proteins. In this report, we describe the isolation and analysis of a membrane-spanning core complex from the Helicobacter pylori cag T4SS, which has an important role in the pathogenesis of gastric cancer. We show that this complex contains five H. pylori proteins, CagM, CagT, Cag3, CagX, and CagY, each of which is required for cag T4SS activity. CagX and CagY are orthologous to the VirB9 and VirB10 components of T4SSs in other bacterial species, and the other three Cag proteins are unique to H. pylori . Negative stain single-particle electron microscopy revealed complexes 41 nm in diameter, characterized by a 19-nm-diameter central ring linked to an outer ring by spoke-like linkers. Incomplete complexes formed by Δ cag3 or Δ cagT mutants retain the 19-nm-diameter ring but lack an organized outer ring. Immunogold labeling studies confirm that Cag3 is a peripheral component of the complex. The cag T4SS core complex has an overall diameter and structural organization that differ considerably from the corresponding features of conjugative T4SSs. These results highlight specialized features of the H. pylori cag T4SS that are optimized for function in the human gastric mucosal environment. IMPORTANCE Type IV secretion systems (T4SSs) are versatile macromolecular machines that are present in many bacterial species. In this study, we investigated a T4SS found in the bacterium Helicobacter pylori. H. pylori is an important cause of stomach cancer, and the H. pylori T4SS contributes to cancer pathogenesis by mediating entry of CagA (an effector protein regarded as a “bacterial oncoprotein”) into gastric epithelial cells. We isolated and analyzed the membrane-spanning core complex of the H. pylori T4SS and showed that it contains unique proteins unrelated to components of T4SSs in other bacterial species. These results constitute the first structural analysis of the core complex from this important secretion system.


mBio ◽  
2020 ◽  
Vol 11 (4) ◽  
Author(s):  
Samira Zouhir ◽  
Wiem Abidi ◽  
Meryem Caleechurn ◽  
Petya Violinova Krasteva

ABSTRACT Most bacteria respond to surfaces by biogenesis of intracellular c-di-GMP, which inhibits motility and induces secretion of biofilm-promoting adherence factors. Bacterial cellulose is a widespread biofilm component whose secretion in Gram-negative species requires an inner membrane, c-di-GMP-dependent synthase tandem (BcsAB), an outer membrane porin (BcsC), and various accessory subunits that regulate synthase assembly and function as well as the exopolysaccharide’s chemical composition and mechanical properties. We recently showed that in Escherichia coli, most Bcs proteins form a megadalton-sized secretory nanomachine, but the role and structure of individual regulatory components remained enigmatic. Here, we demonstrate that essential-for-secretion BcsR and BcsQ regulate each other’s folding and stability and are recruited to the inner membrane via c-di-GMP-sensing BcsE and its intraoperon partner BcsF. Crystallographic and solution-based data show that BcsE’s predicted GIL domain is a degenerate receiver-GGDEF domain tandem (BcsEREC*-GGDEF*), where the divergent diguanylate cyclase module binds both dimeric c-di-GMP and BcsQ through mutually independent interfaces. In addition, we reveal that a third N-terminal domain (BcsENTD) determines the protein’s homooligomerization and targeting of BcsERQ to the membrane as well as previously unreported interactions with transcription antitermination complex components. Together, the data suggest that BcsE acts on multiple levels to fine-tune bacterial cellulose secretion, from the early stages of secretion system assembly to the maintenance of a membrane-proximal pool of dimeric c-di-GMP for processive synthase activation. IMPORTANCE Bacterial cellulose is a widespread biofilm component that can modulate microbial fitness and virulence both in the environment and infected hosts. Whereas its secretion generally involves an inner membrane c-di-GMP-dependent synthase tandem (BcsAB) across the bacterial domain of life, enterobacteria feature sophisticated Escherichia coli-like Bcs secretion systems, where multiple additional subunits are either required for secretion or contribute to the maximal production of the polysaccharide in vivo. Here, we demonstrate that essential-for-secretion BcsR and BcsQ regulate each other's folding and stability and are recruited to the inner membrane via c-di-GMP-sensing BcsE and its intraoperon partner, BcsF. Crystallographic and functional data reveal that BcsE features unexpected domain architecture and likely acts on multiple levels to fine-tune bacterial cellulose production, from the early stages of secretion system assembly to the maintenence of a membrane-proximal pool of dimeric c-di-GMP for processive synthase activation.


1998 ◽  
Vol 180 (24) ◽  
pp. 6450-6458 ◽  
Author(s):  
Stuart A. Thompson ◽  
Omer L. Shedd ◽  
Kevin C. Ray ◽  
Michael H. Beins ◽  
Jesse P. Jorgensen ◽  
...  

ABSTRACT The virulence of Campylobacter fetus, a bacterial pathogen of ungulates and humans, is mediated in part by the presence of a paracrystalline surface layer (S-layer) that confers serum resistance. The subunits of the S-layer are S-layer proteins (SLPs) that are secreted in the absence of an N-terminal signal sequence and attach to either type A or B C. fetus lipopolysaccharide in a serospecific manner. Antigenic variation of multiple SLPs (encoded bysapA homologs) of type A strain 23D occurs by inversion of a promoter-containing DNA element flanked by two sapAhomologs. Cloning and sequencing of the entire 6.2-kb invertible region from C. fetus 23D revealed a probable 5.6-kb operon of four overlapping genes (sapCDEF, with sizes of 1,035, 1,752, 1,284, and 1,302 bp, respectively) transcribed in the opposite direction from sapA. The four genes also were present in the invertible region of type B strain 84-107 and were virtually identical to their counterparts in the type A strain. Although SapC had no database homologies, SapD, SapE, and SapF had predicted amino acid homologies with type I protein secretion systems (typified byEscherichia coli HlyBD/TolC or Erwinia chrysanthemi PrtDEF) that utilize C-terminal secretion signals to mediate the secretion of hemolysins, leukotoxins, or proteases from other bacterial species. Analysis of the C termini of four C. fetus SLPs revealed conserved structures that are potential secretion signals. A C. fetus sapD mutant neither produced nor secreted SLPs. E. coli expressing C. fetus sapA and sapCDEF secreted SapA, indicating that thesapCDEF genes are sufficient for SLP secretion. C. fetus SLPs therefore are transported to the cell surface by a type I secretion system.


BMC Biology ◽  
2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Lin Chou ◽  
Yu-Chen Lin ◽  
Mindia Haryono ◽  
Mary Nia M. Santos ◽  
Shu-Ting Cho ◽  
...  

Abstract Background Many named species as defined in current bacterial taxonomy correspond to species complexes. Uncertainties regarding the organization of their genetic diversity challenge research efforts. We utilized the Agrobacterium tumefaciens species complex (a.k.a. Agrobacterium biovar 1), a taxon known for its phytopathogenicity and applications in transformation, as a study system and devised strategies for investigating genome diversity and evolution of species complexes. Results We utilized 35 genome assemblies, including 14 newly generated ones, to achieve a phylogenetically balanced sampling of A. tumefaciens. Our genomic analysis suggested that the 10 genomospecies described previously are distinct biological species and supported a quantitative guideline for species delineation. Furthermore, our inference of gene content and core-genome phylogeny allowed for investigations of genes critical in fitness and ecology. For the type VI secretion system (T6SS) involved in interbacterial competition and thought to be conserved, we detected multiple losses and one horizontal gene transfer. For the tumor-inducing plasmids (pTi) and pTi-encoded type IV secretion system (T4SS) that are essential for agrobacterial phytopathogenicity, we uncovered novel diversity and hypothesized their involvement in shaping this species complex. Intriguingly, for both T6SS and T4SS, genes encoding structural components are highly conserved, whereas extensive diversity exists for genes encoding effectors and other proteins. Conclusions We demonstrate that the combination of a phylogeny-guided sampling scheme and an emphasis on high-quality assemblies provides a cost-effective approach for robust analysis in evolutionary genomics. We show that the T6SS VgrG proteins involved in specific effector binding and delivery can be classified into distinct types based on domain organization. The co-occurrence patterns of VgrG-associated domains and the neighboring genes that encode different chaperones/effectors can be used to infer possible interacting partners. Similarly, the associations between plant host preference and the pTi type among these strains can be used to infer phenotype-genotype correspondence. Our strategies for multi-level investigations at scales that range from whole genomes to intragenic domains and phylogenetic depths from between- to within-species are applicable to other bacteria. Furthermore, modularity observed in the molecular evolution of genes and domains is useful for inferring functional constraints and informing experimental works.


2020 ◽  
Vol 44 (3) ◽  
pp. 253-304 ◽  
Author(s):  
Morgan Beeby ◽  
Josie L Ferreira ◽  
Patrick Tripp ◽  
Sonja-Verena Albers ◽  
David R Mitchell

ABSTRACT Echoing the repeated convergent evolution of flight and vision in large eukaryotes, propulsive swimming motility has evolved independently in microbes in each of the three domains of life. Filamentous appendages – archaella in Archaea, flagella in Bacteria and cilia in Eukaryotes – wave, whip or rotate to propel microbes, overcoming diffusion and enabling colonization of new environments. The implementations of the three propulsive nanomachines are distinct, however: archaella and flagella rotate, while cilia beat or wave; flagella and cilia assemble at their tips, while archaella assemble at their base; archaella and cilia use ATP for motility, while flagella use ion-motive force. These underlying differences reflect the tinkering required to evolve a molecular machine, in which pre-existing machines in the appropriate contexts were iteratively co-opted for new functions and whose origins are reflected in their resultant mechanisms. Contemporary homologies suggest that archaella evolved from a non-rotary pilus, flagella from a non-rotary appendage or secretion system, and cilia from a passive sensory structure. Here, we review the structure, assembly, mechanism and homologies of the three distinct solutions as a foundation to better understand how propulsive nanomachines evolved three times independently and to highlight principles of molecular evolution.


mBio ◽  
2012 ◽  
Vol 3 (1) ◽  
Author(s):  
Sonia C. P. Costa ◽  
Alexa M. Schmitz ◽  
Fathima F. Jahufar ◽  
Justin D. Boyd ◽  
Min Y. Cho ◽  
...  

ABSTRACTMany Gram-negative bacteria utilize specialized secretion systems to inject proteins (effectors) directly into host cells. Little is known regarding how bacteria ensure that only small subsets of the thousands of proteins they encode are recognized as substrates of the secretion systems, limiting their identification through bioinformatic analyses. Many of these proteins require chaperones to direct their secretion. Here, using the newly described protein interaction platform assay, we demonstrate that type 3 secretion system class IB chaperones from one bacterium directly bind their own effectors as well as those from other species. In addition, we observe that expression of class IB homologs from seven species, including pathogens and endosymbionts, mediate the translocation of effectors fromShigelladirectly into host cells, demonstrating that class IB chaperones are often functionally interchangeable. Notably, class IB chaperones bind numerous effectors. However, as previously proposed, they are not promiscuous; rather they recognize a defined sequence that we designate the conserved chaperone-binding domain (CCBD) sequence [(LMIF)1XXX(IV)5XX(IV)8X(N)10]. This sequence is the first defined amino acid sequence to be identified for any interspecies bacterial secretion system, i.e., a system that delivers proteins directly into eukaryotic cells. This sequence provides a new means to identify substrates of type III secretion systems. Indeed, using a pattern search algorithm for the CCBD sequence, we have identified the first two probable effectors from an endosymbiont,Sodalis glossinidius.IMPORTANCEMany Gram-negative pathogens utilize type 3 secretion systems to deliver tens of effectors into host cells. In order to understand the diverse ways that these organisms cause disease, it is necessary to identify their effectors, many of which require chaperones to be secreted. Here we establish that class IB chaperones are not promiscuous, as previously proposed, but rather recognize a conserved effector sequence. We demonstrate that pattern search algorithms based on this defined sequence can be used to identify previously unknown effectors. Furthermore, we observe that class IB chaperones from at least seven bacterial species are functionally interchangeable. Not only do they bind and mediate the delivery of their own set of effectors into host cells but they also bind to type 3 substrates from other bacteria, suggesting that inhibitors that block chaperone-effector interactions could provide a novel means to effectively treat infections due to Gram-negative pathogens, including organisms resistant to currently available antibiotics.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Christopher Icke ◽  
Freya J Hodges ◽  
Karthik Pullela ◽  
Samantha A McKeand ◽  
Jack Alfred Bryant ◽  
...  

Protein acylation is critical for many cellular functions across all domains of life. In bacteria, lipoproteins have important roles in virulence and are targets for the development of antimicrobials and vaccines. Bacterial lipoproteins are secreted from the cytosol via the Sec pathway and acylated on an N-terminal cysteine residue through the action of three enzymes. In Gram-negative bacteria, the Lol pathway transports lipoproteins to the outer membrane. Here we demonstrate that the Aat secretion system is a composite system sharing similarity with elements of a type I secretion systems and the Lol pathway. During secretion, the AatD subunit acylates the substrate CexE on a highly conserved N-terminal glycine residue. Mutations disrupting glycine acylation interfere with membrane incorporation and trafficking. Our data reveal CexE as the first member of a new class of glycine-acylated lipoprotein, while Aat represents a new secretion system that displays the substrate lipoprotein on the cell surface.


Toxins ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 341
Author(s):  
Nathalie Dautin

The type 5 secretion system (T5SS) is one of the more widespread secretion systems in Gram-negative bacteria. Proteins secreted by the T5SS are functionally diverse (toxins, adhesins, enzymes) and include numerous virulence factors. Mechanistically, the T5SS has long been considered the simplest of secretion systems, due to the paucity of proteins required for its functioning. Still, despite more than two decades of study, the exact process by which T5SS substrates attain their final destination and correct conformation is not totally deciphered. Moreover, the recent addition of new sub-families to the T5SS raises additional questions about this secretion mechanism. Central to the understanding of type 5 secretion is the question of protein folding, which needs to be carefully controlled in each of the bacterial cell compartments these proteins cross. Here, the biogenesis of proteins secreted by the Type 5 secretion system is discussed, with a focus on the various factors preventing or promoting protein folding during biogenesis.


2002 ◽  
Vol 184 (21) ◽  
pp. 5966-5970 ◽  
Author(s):  
Sarah E. Burr ◽  
Katja Stuber ◽  
Thomas Wahli ◽  
Joachim Frey

ABSTRACT Aeromonas salmonicida subsp. salmonicida, the etiological agent of furunculosis, is an important fish pathogen. We have screened this bacterium with a broad-host-range probe directed against yscV, the gene that encodes the archetype of a highly conserved family of inner membrane proteins found in every known type III secretion system. This has led to the identification of seven open reading frames that encode homologues to proteins functioning within the type III secretion systems of Yersinia species. Six of these proteins are encoded by genes comprising a virA operon. The A. salmonicida subsp. salmonicida yscV homologue, ascV, was inactivated by marker replacement mutagenesis and used to generate an isogenic ascV mutant. Comparison of the extracellular protein profiles from the ascV mutant and the wild-type strain indicates that A. salmonicida subsp. salmonicida secretes proteins via a type III secretion system. The recently identified ADP-ribosylating toxin AexT was identified as one such protein. Finally, we have compared the toxicities of the wild-type A. salmonicida subsp. salmonicida strain and the ascV mutant against RTG-2 rainbow trout gonad cells. While infection with the wild-type strain results in significant morphological changes, including cell rounding, infection with the ascV mutant has no toxic effect, indicating that the type III secretion system we have identified plays an important role in the virulence of this pathogen.


2017 ◽  
Vol 84 (1) ◽  
Author(s):  
Sakshi Khosa ◽  
Romy Scholz ◽  
Christian Schwarz ◽  
Mirko Trilling ◽  
Hartmut Hengel ◽  
...  

ABSTRACTEfficient protein secretion is often a valuable alternative to classic cellular expression to obtain homogenous protein samples. Early on, bacterial type I secretion systems (T1SS) were employed to allow heterologous secretion of fusion proteins. However, this approach was not fully exploited, as many proteins could not be secreted at all or only at low levels. Here, we present an engineered microbial secretion system which allows the effective production of proteins up to a molecular mass of 88 kDa. This system is based on the hemolysin A (HlyA) T1SS of the Gram-negative bacteriumEscherichia coli, which exports polypeptides when fused to a hemolysin secretion signal. We identified an A/U-rich enhancer region upstream ofhlyArequired for effective expression and secretion of selected heterologous proteins irrespective of their prokaryotic, viral, or eukaryotic origin. We further demonstrate that the ribosomal protein S1 binds to thehlyAA/U-rich enhancer region and that this region is involved in the high yields of secretion of functional proteins, like maltose-binding protein or human interferon alpha-2.IMPORTANCEA 5′ untranslated region of the mRNA of substrates of type I secretion systems (T1SS) drastically enhanced the secretion efficiency of the endogenously secreted protein. The identification of ribosomal protein S1 as the interaction partner of this 5′ untranslated region provides a rationale for the enhancement. This strategy furthermore can be transferred to fusion proteins allowing a broader, and eventually a more general, application of this system for secreting heterologous fusion proteins.


Sign in / Sign up

Export Citation Format

Share Document