spermine oxidase
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 18)

H-INDEX

24
(FIVE YEARS 4)

Animals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 88
Author(s):  
Eunji Kim ◽  
Areeg Almubarak ◽  
Nabeel Talha ◽  
Il-Jeoung Yu ◽  
Yubyeol Jeon

κ-Carrageenan is a plant polysaccharide derived from red seaweeds reported to possess potential medicinal and antioxidants activities. The present study aimed to identify the cryoprotective effects of κ-carrageenan on the quality of frozen-thawed canine semen. Twenty-eight ejaculates were collected and diluted in a Tris egg-yolk-free extender supplemented with various concentrations of κ-carrageenan (0.0%, 0.1%, 0.2%, 0.3%, and 0.5%). The addition of κ-carrageenan to the extender at a 0.2% concentration induced a significant increase in the total motility (TM) and the rapid progressive motility (RPM) of canine sperm. Among the experimental groups, the highest percentage of sperms with intact acrosomes was found in the 0.5% κ-carrageenan group (p < 0.05). Apoptosis levels were significantly lower in the 0.1% and 0.2% κ-carrageenan treatment. Moreover, sperm in the κ-carrageenan supplemented group showed a significantly higher expression of antiapoptotic (Bcl-2) and lower expression of NADPH oxidase (NOX5), spermine synthase (SMS), and spermine oxidase (SMOX) genes than those in the control group. In conclusion, the addition of κ-carrageenan to the freezing extender improved the overall efficiency of frozen-thawed dog spermatozoa.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
João Fadista ◽  
Victor Yakimov ◽  
Urmo Võsa ◽  
Christine S. Hansen ◽  
Silva Kasela ◽  
...  

AbstractSpermine oxidase (SMOX) catalyzes the oxidation of spermine to spermidine. Observational studies have reported SMOX as a source of reactive oxygen species associated with cancer, implying that inhibition of SMOX could be a target for chemoprevention. Here we test causality of SMOX levels with cancer risk using a Mendelian randomization analysis. We performed a GWAS of spermidine/spermine ratio to identify genetic variants associated with regulation of SMOX activity. Replication analysis was performed in two datasets of SMOX gene expression. We then did a Mendelian randomization analysis by testing the association between the SMOX genetic instrument and neuroblastoma, gastric, lung, breast, prostate, and colorectal cancers using GWAS summary statistics. GWAS of spermidine/spermine ratio identified SMOX locus (P = 1.34 × 10–49) explaining 32% of the variance. The lead SNP rs1741315 was also associated with SMOX gene expression in newborns (P = 8.48 × 10–28) and adults (P = 2.748 × 10–8) explaining 37% and 6% of the variance, respectively. Genetically determined SMOX activity was not associated with neuroblastoma, gastric, lung, breast, prostate nor colorectal cancer (P > 0.05). A PheWAS of rs1741315 did not reveal any relevant associations. Common genetic variation in the SMOX gene was strongly associated with SMOX activity in newborns, and less strongly in adults. Genetic down-regulation of SMOX was not significantly associated with lower odds of neuroblastoma, gastric, lung, breast, prostate and colorectal cancer. These results may inform studies of SMOX inhibition as a target for chemoprevention.


Biomolecules ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1274
Author(s):  
Chiara Cervetto ◽  
Monica Averna ◽  
Laura Vergani ◽  
Marco Pedrazzi ◽  
Sarah Amato ◽  
...  

Background: In the brain, polyamines are mainly synthesized in neurons, but preferentially accumulated in astrocytes, and are proposed to be involved in neurodegenerative/neuroinflammatory disorders and neuron injury. A transgenic mouse overexpressing spermine oxidase (SMOX, which specifically oxidizes spermine) in the neocortex neurons (Dach-SMOX mouse) was proved to be a model of increased susceptibility to excitotoxic injury. Methods: To investigate possible alterations in synapse functioning in Dach-SMOX mouse, both cerebrocortical nerve terminals (synaptosomes) and astrocytic processes (gliosomes) were analysed by assessing polyamine levels, ezrin and vimentin content, glutamate AMPA receptor activation, calcium influx, and catalase activity. Results: The main findings are as follows: (i) the presence of functional calcium-permeable AMPA receptors in synaptosomes from both control and Dach-SMOX mice, and in gliosomes from Dach-SMOX mice only; (ii) reduced content of spermine in gliosomes from Dach-SMOX mice; and (iii) down-regulation and up-regulation of catalase activity in synaptosomes and gliosomes, respectively, from Dach-SMOX mice. Conclusions: Chronic activation of SMOX in neurons leads to major changes in the astrocyte processes including reduced spermine levels, increased calcium influx through calcium-permeable AMPA receptors, and stimulation of catalase activity. Astrocytosis and the astrocyte process alterations, depending on chronic activation of polyamine catabolism, result in synapse dysregulation and neuronal suffering.


2020 ◽  
Vol 21 (21) ◽  
pp. 8227
Author(s):  
Jonathan Fernando Reinoso-Sánchez ◽  
Giulia Baroli ◽  
Guglielmo Duranti ◽  
Silvia Scaricamazza ◽  
Stefania Sabatini ◽  
...  

Skeletal muscle atrophy is a pathological condition so far without effective treatment and poorly understood at a molecular level. Emerging evidence suggest a key role for circular RNAs (circRNA) during myogenesis and their deregulation has been reported to be associated with muscle diseases. Spermine oxidase (SMOX), a polyamine catabolic enzyme plays a critical role in muscle differentiation and the existence of a circRNA arising from SMOX gene has been recently identified. In this study, we evaluated the expression profile of circular and linear SMOX in both C2C12 differentiation and dexamethasone-induced myotubes atrophy. To validate our findings in vivo their expression levels were also tested in two murine models of amyotrophic lateral sclerosis: SOD1G93A and hFUS+/+, characterized by progressive muscle atrophy. During C2C12 differentiation, linear and circular SMOX show the same trend of expression. Interestingly, in atrophy circSMOX levels significantly increased compared to the physiological state, in both in vitro and in vivo models. Our study demonstrates that SMOX represents a new player in muscle physiopathology and provides a scientific basis for further investigation on circSMOX RNA as a possible new therapeutic target for the treatment of muscle atrophy.


Acta Naturae ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 140-144
Author(s):  
T. T. Dunston ◽  
M. A. Khomutov ◽  
S. B. Gabelli ◽  
T. M. Stewart ◽  
J. R. Foley ◽  
...  

Homeostasis of the biogenic polyamines spermine (Spm) and spermidine (Spd), present in M-mM concentrations in all eukaryotic cells, is precisely regulated by coordinated activities of the enzymes of polyamine synthesis, degradation, and transport, in order to sustain normal cell growth and viability. Spermine oxidase (SMOX) is the key and most recently discovered enzyme of polyamine metabolism that plays an essential role in regulating polyamine homeostasis by catalyzing the back-conversion of Spm to Spd. The development of many types of epithelial cancer is associated with inflammation, and disease-related inflammatory stimuli induce SMOX. MDL72527 is widely used in vitro and in vivo as an irreversible inhibitor of SMOX, but it is also potent towards N1-acetylpolyamine oxidase. Although SMOX has high substrate specificity, Spm analogues have not been systematically studied as enzyme inhibitors. Here we demonstrate that 1,12-diamino-2,11-bis(methylidene)-4,9-diazadodecane (2,11-Met2-Spm) has, under standard assay conditions, an IC50 value of 169 M towards SMOX and is an interesting instrument and lead compound for studying polyamine catabolism.


2020 ◽  
Author(s):  
João Fadista ◽  
Victor Yakimov ◽  
Urmo Võsa ◽  
Christine S. Hansen ◽  
Silva Kasela ◽  
...  

ABSTRACTImportanceSpermine oxidase (SMOX) catalyzes the oxidation of spermine to spermidine. Observational studies have reported SMOX as a source of induced reactive oxygen species associated with cancer, implying that inhibition of SMOX could be a target for chemoprevention.ObjectiveTo test the causality of SMOX levels with cancer risk using a Mendelian randomization analysis.Design, Setting, and ParticipantsWe performed a GWAS of spermidine/spermine ratio, from blood of 534 infants, to identify genetic variants associated with regulation of SMOX activity. In two additional data sets of 262 newborns and 508 adults, we quantified SMOX gene expression using RNA-sequencing and performed expression and methylation QTL lookups. We then did a Mendelian randomization analysis by testing the association between the SMOX genetic instrument and various cancer types using GWAS summary statistics.Main Outcomes and MeasuresNeuroblastoma, gastric, lung, breast, prostate, and colorectal cancers.ResultsThe GWAS of spermidine/spermine ratio identified a genome-wide significant locus (P=1.34×10−49) explaining 32% of the variance. The lead SNP rs1741315 was also associated with SMOX gene expression in newborns (P=8.48×10−28) and adults (P=2.748×10−8) explaining 37% and 6% of the variance, respectively. rs1741315 was not associated with neuroblastoma (OR=0.95; 95% CI:0.88, 1.03; P=0.18), gastric (OR=0.99; 95% CI:0.95, 1.03; P=0.54), lung (OR=0.97; 95% CI:0.94, 1.00; P=0.08), breast (OR=0.99; 95% CI:0.96, 1.02; P=0.47), prostate (OR=0.98; 95% CI:0.96, 1.00; P=0.05) nor colorectal cancer (OR=1.03; 95% CI:0.99, 1.07; P=0.10). A PheWAS of rs1741315 did not reveal any associations with risk factors of the cancers tested.Conclusions and RelevanceGenetic variation in the SMOX gene was strongly associated with SMOX activity in newborns, and less strongly in adults. Genetic down-regulation of SMOX was not significantly associated with lower odds of neuroblastoma, gastric, lung, breast, prostate and colorectal cancer. Further studies are needed to understand the effect of SMOX inhibition in relation to cancer risk.ARTICLE SUMMARYQuestionIs SMOX causally associated with risk of cancer?FindingsIn this Mendelian randomization study, genetically lower levels of SMOX were not associated with decreased risk of neuroblastoma, gastric, lung, breast, prostate and colorectal cancer.MeaningThese findings do not support a causal association between SMOX activity and risk of cancer, suggesting that ongoing efforts to identify SMOX inhibitors for chemoprevention may not be successful.STRENGHTS AND LIMITATIONS-Previous studies which examined SMOX activity and cancer risk were susceptible to recall bias, confounding and reverse causation, none of which are concerns of this Mendelian randomization study.-Our genetic instrument explained a sizeable proportion of the variance of SMOX activity-We used summary statistics from the largest meta-analyses of primary cancer GWAS to date.-Elevated SMOX levels in cancer could also be due to environmental factors not captured by genetics.-Our genetic instrument was developed based on normal range SMOX activity data, thus additional genetic variants might play a role in aberrant expression of this enzyme.


Oncogene ◽  
2020 ◽  
Vol 39 (22) ◽  
pp. 4465-4474 ◽  
Author(s):  
Johanna C. Sierra ◽  
M. Blanca Piazuelo ◽  
Paula B. Luis ◽  
Daniel P. Barry ◽  
Margaret M. Allaman ◽  
...  

2020 ◽  
Vol 9 (2) ◽  
pp. 340 ◽  
Author(s):  
Fang Liu ◽  
Alan B. Saul ◽  
Prahalathan Pichavaram ◽  
Zhimin Xu ◽  
Madhuri Rudraraju ◽  
...  

Diabetic retinopathy (DR) is a significant cause of blindness in working-age adults worldwide. Lack of effective strategies to prevent or reduce vision loss is a major problem. Since the degeneration of retinal neurons is an early event in the diabetic retina, studies to characterize the molecular mechanisms of diabetes-induced retinal neuronal damage and dysfunction are of high significance. We have demonstrated that spermine oxidase (SMOX), a mediator of polyamine oxidation is critically involved in causing neurovascular damage in the retina. The involvement of SMOX in diabetes-induced retinal neuronal damage is completely unknown. Utilizing the streptozotocin-induced mouse model of diabetes, the impact of the SMOX inhibitor, MDL 72527, on neuronal damage and dysfunction in the diabetic retina was investigated. Retinal function was assessed by electroretinography (ERG) and retinal architecture was evaluated using spectral domain-optical coherence tomography. Retinal cryosections were prepared for immunolabeling of inner retinal neurons and retinal lysates were used for Western blotting. We observed a marked decrease in retinal function in diabetic mice compared to the non-diabetic controls. Treatment with MDL 72527 significantly improved the ERG responses in diabetic retinas. Diabetes-induced retinal thinning was also inhibited by the MDL 72527 treatment. Our analysis further showed that diabetes-induced retinal ganglion cell damage and neurodegeneration were markedly attenuated by MDL 72527 treatment. These results strongly implicate SMOX in diabetes-induced retinal neurodegeneration and visual dysfunction.


Sign in / Sign up

Export Citation Format

Share Document