selection signature
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 29)

H-INDEX

8
(FIVE YEARS 3)

Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 102
Author(s):  
Mingue Kang ◽  
Byeongyong Ahn ◽  
Seungyeon Youk ◽  
Yun-Mi Lee ◽  
Jong-Joo Kim ◽  
...  

Genetic analysis of the hair-length of Sapsaree dogs, a Korean native dog breed, showed a dominant mode of inheritance for long hair. Genome-Wide Association Study (GWAS) analysis and subsequent Mendelian segregation analysis revealed an association between OXR1, RSPO2, and PKHD1L1 on chromosome 13 (CFA13). We identified the previously reported 167 bp insertion in RSPO2 3’ untranslated region as a causative mutation for hair length variations. The analysis of 118 dog breeds and wolves revealed the selection signature on CFA13 in long-haired breeds. Haplotype analysis showed the association of only a few specific haplotypes to the breeds carrying the 167 bp insertion. The genetic diversity in the neighboring region linked to the insertion was higher in Sapsarees than in other Asian and European dog breeds carrying the same variation, suggesting an older history of its insertion in the Sapsaree genome than in that of the other breeds analyzed in this study. Our results show that the RSPO2 3’ UTR insertion is responsible for not only the furnishing phenotype but also determining the hair length of the entire body depending on the genetic background, suggesting an epistatic interaction between FGF5 and RSPO2 influencing the hair-length phenotype in dogs.


Gene ◽  
2022 ◽  
pp. 146165
Author(s):  
Divya Rajawat ◽  
Manjit Panigrahi ◽  
Harshit Kumar ◽  
Sonali Sonejita Nayak ◽  
Subhashree Parida ◽  
...  

2021 ◽  
Author(s):  
Adriana Vallejo-Trujillo ◽  
Adebabay Kebede ◽  
Maria Lozano-Jaramillo ◽  
Tadelle Dessie ◽  
Jacqueline Smith ◽  
...  

AbstractIn evolutionary ecology, an ecotype is a population that is genetically adapted to specific environmental conditions. Environmental and genetic characterisation of livestock ecotypes can play a crucial role in conservation and breeding improvement, particularly to achieve climate resilience. However, livestock ecotypes are often arbitrarily defined without a detailed characterisation of their agro-ecologies. In this study, we employ a novel integrated approach, combining Ecological Niche Modelling (ENM) with genomics, to delineate ecotypes based on environmental characterisation of population habitats and unravel the signatures of adaptive selection in the ecotype genomes. The method was applied on 25 Ethiopian village chicken populations representing diverse agro-climatic conditions. ENM identified six key environmental drivers of adaptation and delineated 12 ecotypes. Within- ecotype selection signature analyses (using Hp and iHS methods) identified 1,056 candidate sweep regions (SRs) associated with diverse biological processes. A few biological pathways were shared amongst most ecotypes and the involved genes showed functions important for scavenging chickens, e.g. neuronal development/processes, immune response, vision development, and learning. Genotype-environment association using Redundancy Analysis (RDA) allowed for correlating ∼33% of the SRs with major environmental drivers. Inspection of some strong candidate genes from selection signature analysis and RDA showed highly relevant functions in relation to the major environmental drivers of corresponding ecotypes. This integrated approach offers a powerful tool to gain insight into the complex processes of adaptive evolution including the genotype x environment (GxE) interactions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhihao Zuo ◽  
Yue Lu ◽  
Minyan Zhu ◽  
Rujia Chen ◽  
Enying Zhang ◽  
...  

The maize (Zea mays L.) ZmCNR13 gene, encoding a protein of fw2.2-like (FWL) family, has been demonstrated to be involved in cell division, expansion, and differentiation. In the present study, the genomic sequences of the ZmCNR13 locus were re-sequenced in 224 inbred lines, 56 landraces and 30 teosintes, and the nucleotide polymorphism and selection signature were estimated. A total of 501 variants, including 415 SNPs and 86 Indels, were detected. Among them, 51 SNPs and 4 Indels were located in the coding regions. Although neutrality tests revealed that this locus had escaped from artificial selection during the process of maize domestication, the population of inbred lines possesses lower nucleotide diversity and decay of linkage disequilibrium. To estimate the association between sequence variants of ZmCNR13 and maize ear characteristics, a total of ten ear-related traits were obtained from the selected inbred lines. Four variants were found to be significantly associated with six ear-related traits. Among them, SNP2305, a non-synonymous mutation in exon 2, was found to be associated with ear weight, ear grain weight, ear diameter and ear row number, and explained 4.59, 4.61, 4.31, and 8.42% of the phenotypic variations, respectively. These results revealed that natural variations of ZmCNR13 might be involved in ear development and can be used in genetic improvement of maize ear-related traits.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shiv K. Tyagi ◽  
Arnav Mehrotra ◽  
Akansha Singh ◽  
Amit Kumar ◽  
Triveni Dutt ◽  
...  

India is home to a large and diverse buffalo population. The Murrah breed of North India is known for its milk production, and it has been used in breeding programs in several countries. Selection signature analysis yield valuable information about how the natural and artificial selective pressures have shaped the genomic landscape of modern-day livestock species. Genotype information was generated on six buffalo breeds of India, namely, Murrah, Bhadawari, Mehsana, Pandharpuri, Surti, and Toda using ddRAD sequencing protocol. Initially, the genotypes were used to carry out population diversity and structure analysis among the six breeds, followed by pair-wise comparisons of Murrah with the other five breeds through XP-EHH and FST methodologies to identify regions under selection in Murrah. Admixture results showed significant levels of Murrah inheritance in all the breeds except Pandharpuri. The selection signature analysis revealed six regions in Murrah, which were identified in more than one pair-wise comparison through both XP-EHH and FST analyses. The significant regions overlapped with QTLs for milk production, immunity, and body development traits. Genes present in these regions included SLC37A1, PDE9A, PPBP, CXCL6, RASSF6, AFM, AFP, ALB, ANKRD17, CNTNAP2, GPC5, MYLK3, and GPT2. These genes emerged as candidates for future polymorphism studies of adaptability and performance traits in buffaloes. The results also suggested ddRAD sequencing as a useful cost-effective alternative for whole-genome sequencing to carry out diversity analysis and discover selection signatures in Indian buffalo breeds.


2021 ◽  
Author(s):  
Jingwei Yuan ◽  
Shijun Li ◽  
Zheya Sheng ◽  
Meikun Zhang ◽  
Xuming Liu ◽  
...  

Abstract Background In Tibet, two most important breeds are Tibetan chicken and Lhasa white chicken, and the duo exhibit specific adaptations to high altitude and produce indispensable protein for humans living in the plateau. These breeds were partly included in conservation plans as their biodiversity is important as a genetic resource. However, population genetic analysis of the chickens is rarely investigated. Based on whole-genome sequencing data of 113 chickens from 4 Tibetan chicken population including Shigatse (SH), Nyemo (NM), Dagze (DZ) and Nyingchi (LZ), as well as Lhasa white (LW) chicken population, we performed genetic diversity and differentiation, run of homozygosity (ROH), genomic inbreeding and selection signature analyses. Results Our results showed high genetic diversity across the five chicken populations. The linkage disequilibrium decay was highest in LZ, and moderate level of genetic differentiation was found between LZ and other populations (Fst ranging from 0.05 to 0.10). Furthermore, the highest ROH-based inbreeding estimate (FROH) was 0.11 in LZ, whereas it ranges from 0.04 to 0.06 in the other four chicken populations. In total, 74, 111, 62, 42 and 54 ROHs containing SNPs with concurrency ranked top 1% were identified for SH, NM, DZ, LZ and LW, respectively. BDNF, CCDC34, LGR4, LIN7C, GLS, LOC101747789, MYO1B, STAT1 and STAT4 were shared genes harbored by these ROHs in the five populations, suggesting their important roles in adaptation of the chickens. Combined with selection signature analysis, we also identified a common candidate genomic region harboring AMY2A, NTNG1 and VAV3 genes. These genes have been reported to contribute to digestion, neurite growth and high-altitude adaptation, which could be involved in selection during evolution process. Conclusions High genetic diversity was observed in Tibetan native chickens. Nyingchi population, possessing highest FROH, is genetically distant from other chicken population. Candidate genes in ROH islands could aid the genetic characterization of the five Tibetan native chicken populations. Our findings contribute to the understanding of genetic diversity and offer valuable insights for the genetic mechanism of adaptation, as well as provide veritable tools that can help in the design and implementation of breeding and conservation strategies for Tibetan native chickens.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marius Gonse Zoh ◽  
Jean-Marc Bonneville ◽  
Jordan Tutagata ◽  
Frederic Laporte ◽  
Behi K. Fodjo ◽  
...  

AbstractThe introduction of neonicotinoids for managing insecticide resistance in mosquitoes is of high interest as they interact with a biochemical target not previously used in public health. In this concern, Bayer developed a combination of the neonicotinoid clothianidin and the pyrethroid deltamethrin (brand name Fludora Fusion) as a new vector control tool. Although this combination proved to be efficient against pyrethroid-resistant mosquitoes, its ability to prevent the selection of pyrethroid and neonicotinoid resistance alleles was not investigated. In this context, the objective of this work was to study the dynamics and the molecular mechanisms of resistance of An. gambiae to the separated or combined components of this combination. A field-derived An. gambiae line carrying resistance alleles to multiple insecticides at low frequencies was used as a starting for 33 successive generations of controlled selection. Resistance levels to each insecticide and target site mutation frequencies were monitored throughout the selection process. Cross resistance to other public health insecticides were also investigated. RNA-seq was used to compare gene transcription variations and polymorphisms across all lines. This study confirmed the potential of this insecticide combination to impair the selection of resistance as compared to its two separated components. Deltamethrin selection led to the rapid enrichment of the kdr L1014F target-site mutation. Clothianidin selection led to the over-transcription of multiple cytochrome P450s including some showing high homology with those conferring neonicotinoid resistance in other insects. A strong selection signature associated with clothianidin selection was also observed on a P450 gene cluster previously associated with resistance. Within this cluster, the gene CYP6M1 showed the highest selection signature together with a transcription profile supporting a role in clothianidin resistance. Modelling the impact of point mutations selected by clothianidin on CYP6M1 protein structure showed that selection retained a protein variant with a modified active site potentially enhancing clothianidin metabolism. In the context of the recent deployment of neonicotinoids for mosquito control and their frequent usage in agriculture, the present study highlights the benefit of combining them with other insecticides for preventing the selection of resistance and sustaining vector control activities.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Chenmiao Liu ◽  
Shuhui Wang ◽  
Xianggui Dong ◽  
Jiping Zhao ◽  
Xiangyang Ye ◽  
...  

Abstract Background Chinese indigenous rabbits have distinct characteristics, such as roughage resistance, stress resistance and environmental adaptability, which are of great significance to the sustainable development of the rabbit industry in China. Therefore, it is necessary to study the genetic diversity and population structure of this species and develop genomic resources. Results In this study, we used restriction site-associated DNA sequencing (RAD-seq) to obtain 1,006,496 SNP markers from six Chinese indigenous rabbit breeds and two imported rabbit breeds. Jiuyishan and Fujian Yellow rabbits showed the highest nucleotide diversity (π) and decay of linkage disequilibrium (LD), as well as higher observed heterozygosity (Ho) and expected heterozygosity (He), indicating higher genetic diversity than other rabbits. The inbreeding coefficient (FIS) of New Zealand rabbits and Belgian rabbits was higher than that of other rabbits. The neighbour-joining (NJ) tree, principal component analysis (PCA), and population structure analysis of autosomes and Y chromosomes showed that Belgian, New Zealand, Wanzai, Sichuan White, and Minxinan Black rabbits clustered separately, and Fujian Yellow, Yunnan Colourful, and Jiuyishan rabbits clustered together. Wanzai rabbits were clearly separated from other populations (K = 3), which was consistent with the population differentiation index (FST) analysis. The selection signature analysis was performed in two populations with contrasting coat colours. With Sichuan White and New Zealand rabbits as the reference populations and Minxinan Black and Wanzai rabbits as the target populations, 408, 454, 418, and 518 genes with a selection signature, respectively, were obtained. Gene Ontology (GO) classification and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed on the genes with a selection signature. The results showed that the genes with a selection signature were enriched in the melanogenesis pathway in all four sets of selection signature analyses. Conclusions Our study provides the first insights into the genetics and genomics of Chinese indigenous rabbit breeds and serves as a valuable resource for the further effective utilization of the species.


2021 ◽  
Author(s):  
Marius Gonse Zoh ◽  
Jean-Marc Bonneville ◽  
Jordan Tutagana ◽  
Frederic Laporte ◽  
Behi Kouadio Fodjo ◽  
...  

Background: The introduction of neonicotinoids for managing insecticide resistance in mosquitoes is of high interest as they interact with a biochemical target not previously used in public health. In this concern, Bayer developed a combination of the neonicotinoid clothianidin and the pyrethroid deltamethrin (brand name Fludora Fusion) as a new vector control tool. Although this combination proved to be efficient against pyrethroid-resistant mosquitoes, its ability to prevent the selection of pyrethroid and neonicotinoid resistance alleles was not investigated. In this context, the objective of this work was to study the dynamics and the molecular mechanisms of resistance of An. gambiae to the separated or combined components of this combination. A field-derived An. gambiae line carrying resistance alleles to multiple insecticides at low frequencies was used as a starting for 33 successive generations of controlled selection. Resistance levels to each insecticide and target site mutation frequencies were monitored throughout the selection process. Cross resistance to other public health insecticides were also investigated. RNA-seq was used to compare gene transcription variations and polymorphisms across all lines. Results: This study confirmed the potential of this insecticide combination to impair the selection of resistance as compared to its two separated components. Deltamethrin selection led to the rapid enrichment of the kdr L1014F target-site mutation while clothianidin selection led to the over-transcription of multiple cytochrome P450s including some showing high homology with the ones conferring neonicotinoid resistance in other insects. A strong selection signature associated with clothianidin selection was observed on a cytochrome P450 gene cluster previously associated with resistance. Within this cluster, the gene CYP6M1 showed the highest selection signature together with a transcription profile supporting a role in clothianidin resistance. Modelling the impact of point mutations selected by clothianidin on CYP6M1 protein structure suggested that the selection of variants affecting its active site can enhance clothianidin metabolism. Conclusions: In the context of the recent deployment of neonicotinoids for mosquito control and their frequent usage in agriculture, the present study highlights the benefit of combining them with other insecticides for preventing the selection of resistance and sustaining vector control activities.


Sign in / Sign up

Export Citation Format

Share Document