scholarly journals Natural Products Altering GABAergic Transmission

2021 ◽  
Author(s):  
Sayani Banerjee ◽  
Chennu Manisha ◽  
Deepthi Murugan ◽  
Antony Justin

Gamma-amino butyric acid (GABA) is a major inhibitory neurotransmitter found in several regions of the brain and known to have various significant physiological roles as a potent bioactive compound. Malfunction of GABAergic neuronal signaling prompts to cause severe psychiatric symptoms in numerous mental disorders. Several drugs are available in clinical practice for neuropsychiatric disorders targeting through GABAergic pathway, with notable adverse effects. Interestingly, in recent years, researchers are focusing on natural compounds altering GABAergic neurotransmission for various psychiatric disorders due to its wide range of therapeutic efficacy and safety. The enormous variety of natural compounds, namely alkaloids, flavonoids, terpenoids, polyacetylenic alcohols, alkanes and fatty acids were reported to alter the GABAergic transmission through its receptors and or by influencing the transmission, synthesis and metabolism of GABA. Natural compounds are able to cross the blood brain barrier and influence the GABA functions in order to treat anxiety, mania, schizophrenia and cognitive disorders. Therefore, this current chapter describes on natural products which have the potential to alter the GABAergic neurotransmission and its therapeutical benefits in treating several neuropsychiatry disorders using various pharmacological methods.

2021 ◽  
Vol 17 (2) ◽  
pp. 6-15
Author(s):  
L.A. Dziak ◽  
O.S. Tsurkalenko ◽  
K.V. Chekha ◽  
V.M. Suk

Coronavirus infection is a systemic pathology resulting in impairment of the nervous system. The involvement of the central nervous system in COVID-19 is diverse by clinical manifestations and main mechanisms. The mechanisms of interrelations between SARS-CoV-2 and the nervous system include a direct virus-induced lesion of the central nervous system, inflammatory-mediated impairment, thrombus burden, and impairment caused by hypoxia and homeostasis. Due to the multi-factor mechanisms (viral, immune, hypoxic, hypercoagulation), the SARS-CoV-2 infection can cause a wide range of neurological disorders involving both the central and peripheral nervous system and end organs. Dizziness, headache, altered level of consciousness, acute cerebrovascular diseases, hypogeusia, hyposmia, peripheral neuropathies, sleep disorders, delirium, neuralgia, myalgia are the most common signs. The structural and functional changes in various organs and systems and many neurological symptoms are determined to persist after COVID-19. Regardless of the numerous clinical reports about the neurological and psychiatric symptoms of COVID-19 as before it is difficult to determine if they are associated with the direct or indirect impact of viral infection or they are secondary to hypoxia, sepsis, cytokine reaction, and multiple organ failure. Penetrated the brain, COVID-19 can impact the other organs and systems and the body in general. Given the mechanisms of impairment, the survivors after COVID-19 with the infection penetrated the brain are more susceptible to more serious diseases such as Parkinson’s disease, cognitive decline, multiple sclerosis, and other autoimmune diseases. Given the multi-factor pathogenesis of COVID-19 resulting in long-term persistence of the clinical symptoms due to impaired neuroplasticity and neurogenesis followed by cholinergic deficiency, the usage of Neuroxon® 1000 mg a day with twice-day dosing for 30 days. Also, a long-term follow-up and control over the COVID-19 patients are recommended for the prophylaxis, timely determination, and correction of long-term complications.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yaobin Pang ◽  
Shi Wu ◽  
Yingjie He ◽  
Qing Nian ◽  
Jing Lei ◽  
...  

Vitiligo is the most common depigmenting disorder characterized by white patches in the skin. The pathogenetic origin of vitiligo revolves around autoimmune destruction of melanocytes in which, for instance, oxidative stress is responsible for melanocyte molecular, organelle dysfunction and melanocyte specific antigen exposure as well as melanocyte cell death and thus serves as an important contributor for vitiligo progression. In recent years, natural products have shown a wide range of pharmacological bioactivities against many skin diseases, and this review focuses on the effects and mechanisms of natural compounds against vitiligo models. It is showed that some natural compounds such as flavonoids, phenols, glycosides and coumarins have a protective role in melanocytes and thereby arrest the depigmentation, and, additionally, Nrf2/HO-1, MAPK, JAK/STAT, cAMP/PKA, and Wnt/β-catenin signaling pathways were reported to be implicated in these protective effects. This review discusses the great potential of plant derived natural products as anti-vitiligo agents, as well as the future directions to explore.


2019 ◽  
Vol 16 (1) ◽  
pp. 112-129 ◽  
Author(s):  
Aurelio Ortiz ◽  
Miriam Castro ◽  
Estibaliz Sansinenea

Background:3,4-dihydroisocoumarins are an important small group belonging to the class of naturally occurring lactones isolated from different bacterial strains, molds, lichens, and plants. The structures of these natural compounds show various types of substitution in their basic skeleton and this variability influences deeply their biological activities. These lactones are structural subunits of several natural products and serve as useful intermediates in the synthesis of different heterocyclic molecules, which exhibit a wide range of biological activities, such as anti-inflammatory, antiplasmodial, antifungal, antimicrobial, antiangiogenic and antitumoral activities, among others. Their syntheses have attracted attention of many researchers reporting many synthetic strategies to achieve 3,4-dihydroisocoumarins and other related structures. </P><P> Objective: In this context, the isolation of these natural compounds from different sources, their syntheses and biological activities are reviewed, adding the most recent advances and related developments.Conclusion:This review aims to encourage further work on the isolation and synthesis of this class of natural products. It would be beneficial for synthetic as well as the medicinal chemists to design selective, optimized dihydroisocoumarin derivatives as potential drug candidates, since dihydroisocoumarin scaffolds have significant utility in the development of therapeutically relevant and biologically active compounds.


2021 ◽  
Vol 14 (2) ◽  
pp. 86
Author(s):  
Lidia Ciccone ◽  
Jennifer Vandooren ◽  
Susanna Nencetti ◽  
Elisabetta Orlandini

Several studies have reported neuroprotective effects by natural products. A wide range of natural compounds have been investigated, and some of these may play a beneficial role in Alzheimer’s disease (AD) progression. Matrix metalloproteinases (MMPs), a family of zinc-dependent endopeptidases, have been implicated in AD. In particular, MMP-2 and MMP-9 are able to trigger several neuroinflammatory and neurodegenerative pathways. In this review, we summarize and discuss existing literature on natural marine and terrestrial compounds, as well as their ability to modulate MMP-2 and MMP-9, and we evaluate their potential as therapeutic compounds for neurodegenerative and neuroinflammatory diseases, with a focus on Alzheimer’s disease.


1999 ◽  
Vol 82 (6) ◽  
pp. 3041-3045 ◽  
Author(s):  
Ping Jun Zhu ◽  
Vincent A. Chiappinelli

The effects of nicotine on evoked GABAergic synaptic transmission were examined using whole cell recordings from neurons of the lateral spiriform nucleus in embryonic chick brain slices. All synaptic activities were abolished by the GABAA receptor antagonist, bicuculline (20 μM). Under voltage-clamp with KCl-filled pipettes (holding potential −70 mV), nicotine (0.1–1.0 μM) increased the frequency of spontaneous GABAergic currents in a dose-dependent manner. Nicotine enhanced electrically evoked GABAergic transmission only at relatively low concentrations of 50–100 nM (but not 25 nM), which approximate the concentrations of nicotine in the blood produced by cigarette smoking. At higher concentrations nicotine had either no effect (0.25 μM) or diminished (0.5–1.0 μM) evoked GABAergic neurotransmission. Nicotine had no significant effect on the postsynaptic current induced by exogenous GABA (30–50 μM). These data imply that nicotine levels attained in smokers are sufficient to enhance evoked GABAergic transmission in the brain, and that this effect is most likely mediated through activation of presynaptic nicotinic receptors.


1987 ◽  
Vol 1 (2) ◽  
pp. 122-128 ◽  
Author(s):  
Stephen O. Duke ◽  
John Lydon

Phytotoxic compounds from plants and microorganisms represent a wide range of chemistries and mechanisms of action that have potential in the design and development of new herbicides. Although several natural products of higher plants have been patented as herbicides, none have been developed commercially. Many microbial products have been patented as herbicides and several have been or are being developed, including bialophos {L-2-amino-4-[(hydroxy)(methyl)phosphinoyl] -butyryl-L-alanyl-L-alanine} and glufosinate [L-2-amino-4-(hydroxyl)(methyl)(phosphinoyl)-butyric acid]. The new tools of molecular biology and biotechnology are making natural products more attractive alternatives in herbicide discovery programs.


Author(s):  
Georgiana Uță ◽  
Denisa Ștefania Manolescu ◽  
Speranța Avram

Background.: Currently, the pharmacological management in Alzheimer's disease is based on several chemical structures, represented by acetylcholinesterase and N-methyl-D-aspartate (NMDA) receptor ligands, with still unclear molecular mechanisms, but severe side effects. For this reason, a challenge for Alzheimer's disease treatment remains to identify new drugs with reduced side effects. Recently, the natural compounds, in particular certain chemical compounds identified in the essential oil of peppermint, sage, grapes, sea buckthorn, have increased interest as possible therapeutics. Objectives.: In this paper, we have summarized data from the recent literature, on several chemical compounds extracted from Salvia officinalis L., with therapeutic potential in Alzheimer's disease. Methods.: In addition to the wide range of experimental methods performed in vivo and in vitro, also we presented some in silico studies of medicinal compounds. Results. Through this mini-review, we present the latest information regarding the therapeutic characteristics of natural compounds isolated from Salvia officinalis L. in Alzheimer's disease. Conclusion.: Thus, based on the information presented, we can say that phytotherapy is a reliable therapeutic method in a neurodegenerative disease.


2020 ◽  
Vol 17 (2) ◽  
pp. 82-90 ◽  
Author(s):  
Ghodsi Mohammadi Ziarani ◽  
Fatemeh Mohajer ◽  
Zohreh kheilkordi

Background: Natural products have been received attention due to their importance in human life as those are biologically active. In this review, there are some reports through different methods related to the synthesis of the indolizidine 195B which was extracted from poisonous frog; however, due to respect nature, the synthesis of natural compounds such as indolizidine has been attracted much attention among scientists and researchers. Objective: This review discloses the procedures and methods to provide indolizidine 195B from 1989 to 2018 due to their importance as a natural product. Conclusion: There are several methods to give rise to the indolizidine 195B as a natural product that is highly active from the biological perspective in pharmaceutical chemistry. In summary, many protocols for the preparations of indolizidine 195B from various substrates, several reagents, and conditions have been reported from different aromatic and aliphatic.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 546
Author(s):  
Miroslava Nedyalkova ◽  
Vasil Simeonov

A cheminformatics procedure for a partitioning model based on 135 natural compounds including Flavonoids, Saponins, Alkaloids, Terpenes and Triterpenes with drug-like features based on a descriptors pool was developed. The knowledge about the applicability of natural products as a unique source for the development of new candidates towards deadly infectious disease is a contemporary challenge for drug discovery. We propose a partitioning scheme for unveiling drug-likeness candidates with properties that are important for a prompt and efficient drug discovery process. In the present study, the vantage point is about the matching of descriptors to build the partitioning model applied to natural compounds with diversity in structures and complexity of action towards the severe diseases, as the actual SARS-CoV-2 virus. In the times of the de novo design techniques, such tools based on a chemometric and symmetrical effect by the implied descriptors represent another noticeable sign for the power and level of the descriptors applicability in drug discovery in establishing activity and target prediction pipeline for unknown drugs properties.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 530
Author(s):  
Oliviero Bruni ◽  
Luigi Ferini-Strambi ◽  
Elena Giacomoni ◽  
Paolo Pellegrino

Sleep is an essential component of physical and emotional well-being, and lack, or disruption, of sleep due to insomnia is a highly prevalent problem. The interest in complementary and alternative medicines for treating or preventing insomnia has increased recently. Centuries-old herbal treatments, popular for their safety and effectiveness, include valerian, passionflower, lemon balm, lavender, and Californian poppy. These herbal medicines have been shown to reduce sleep latency and increase subjective and objective measures of sleep quality. Research into their molecular components revealed that their sedative and sleep-promoting properties rely on interactions with various neurotransmitter systems in the brain. Gamma-aminobutyric acid (GABA) is an inhibitory neurotransmitter that plays a major role in controlling different vigilance states. GABA receptors are the targets of many pharmacological treatments for insomnia, such as benzodiazepines. Here, we perform a systematic analysis of studies assessing the mechanisms of action of various herbal medicines on different subtypes of GABA receptors in the context of sleep control. Currently available evidence suggests that herbal extracts may exert some of their hypnotic and anxiolytic activity through interacting with GABA receptors and modulating GABAergic signaling in the brain, but their mechanism of action in the treatment of insomnia is not completely understood.


Sign in / Sign up

Export Citation Format

Share Document