pectolytic activity
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 6)

H-INDEX

12
(FIVE YEARS 2)

Plant Disease ◽  
2021 ◽  
Author(s):  
Taketo Fujimoto ◽  
Takato Nakayama ◽  
Takehiro Ohki ◽  
Tetsuo MAOKA

Cabbage (Brassica oleracea var. capitata) is one of the important vegetables in Japan. In the summer of 2019, some cabbages with soft rot were found in commercial fields in Hokkaido, the northern island in Japan. All diseased plants showed grey to brown discoloration and expanding water-soaked lesions on leaves. We obtained two independent strains (NACAB191 and NACAB192) from diseased leaves. DNA from these strains yielded an expected single size amplicon with the primer set of PhF/PhR for P. wasabiae (De Boer et al. 2012) by PCR, but did not yield the expected amplicon with the primer set of BR1f/L1r for P. carotovorum subsp. brasiliense (Duarte et al. 2004) and Eca1f/Eca2r for P. atrosepticum (De Boer et al., 1995) by PCR. These two strains grew at 37°C, and their ability to utilize raffinose and lactose. These bacterial strains were gram-negative and rod-shaped. The bacterium was positive for O-nitrophenyl-beta-D-galactopyranoside, N-acetylglucosaminyl transferase, gelatin liquefaction, and acid production from D-galactose, lactose, melibiose, raffinose, citrate, and trehalose. The bacterium was negative for indole production and acid production from maltose, α-methyl-D-glucoside, sorbitol, D-arabitol, inositol, inulin, and melezitose. All strains exhibited pectolytic activity on potato slices. The sequence analysis of 16S rDNA (LC597897 and LC597898) showed more than 98% identities to P. wasabiae strain (e.g. HAFL01 in Switzerland) by BLAST analysis. In addition, Multi-locus sequence analysis (Ma et al. 2007) was performed by MEGA10 (Kumer et al. 2018) using concatenated DNA sequences of seven housekeeping genes (aconitate hydratase(acnA, LC597923 and LC597924), glyceraldehyde-3-phosphate dehydrogenase A(gapA, LC597970 and LC597971), isocitrate dehydrogenase (icdA, LC597996 and LC597997), malate dehydrogenase(mdh, LC598022 and LC598023), mannitol-1-phosphate dehydrogenase (mtlD, LC598048 and LC598049), glucose-6-phosphate isomerase (pgi, LC598074 and LC598075) and gamma-glutamyl phospate reductase (proA, LC598079 and LC598080)), and all clustered NACAB191 and NACAB192 into a clade containing other confirmed strains of P. wasabiae. As a result, these two strains shared high identity with each other (>98%, E-Values showed 0). The clade containing these two strains was consistently placed in a larger clade with the other P. wasabiae and 100% bootstrap support for its separation from other Pectobacterium species available in GenBank when the consensus tree constructed using Maximum Likelihood method. Pathogenicity of these strains against cabbage (cv. ‘Rakuen’) was confirmed by the field experiments with five weeks growth plants sprayed with bacterial suspension (1×107cfu/ml). Thirty cabbages per strain were used in this study, 12 plants treated the suspension of NACAB191 and 16 plants treated the suspension of NACAB192 which died with the same soft rot symptoms about four weeks after inoculation. Whereas water-inoculated plants remained symptomless. Strains re-isolated from the artificially diseased stems were confirmed as P. wasabiae using the methods as biochemical characterization and multiple genetic analyses. Based on the disease symptoms, the cultural, molecular, and pathological features of the strains, we conclude that the soft rot symptoms of cabbage in Hokkaido in 2019 were caused by P. wasabiae. To our knowledge, this is the first report of P. wasabiae as the soft rot disease agent of cabbage in Japan.


Plant Disease ◽  
2021 ◽  
Author(s):  
Taketo Fujimoto ◽  
Takato Nakayama ◽  
Takehiro Ohki ◽  
Tetsuo MAOKA

Onion (Allium cepa L.) is one of the important vegetables in Japan. In the summer of 2019, onions with soft rot were found in commercial fields in Hokkaido, the northern island in Japan. Diseased onion showed chlorosis, maceration of leaves, and rotted bulbs. We sampled some diseased onions and isolated three independent isolations (NAONI191, NAONI192 and NAONI193) from infected bulbs on LB medium. These strains were identified as Pectobacterium wasabiae based on their inability to grow at 37°C, and their ability to utilize raffinose and lactose. These bacterial strains were gram-negative, rod-shaped, N-acetylglucosaminyl transferase, gelatin liquefaction. The bacterium was positive for O-nitrophenyl-beta-D-galactopyranoside, N-acetylglucosaminyl transferase, gelatin liquefaction, and acid production from D-galactose, lactose, melibiose, raffinose, citrate, and trehalose. The bacterium was negative for indole production and acid production from maltose, α-methyl-D-glucoside, sorbitol, D-arabitol, inositol, inulin, and melezitose. All the strains exhibited pectolytic activity on potato slices. DNA from these strains yielded a single size amplicon with the primer set of PhF/PhR for P. wasabiae (De Boer et al. 2012) by PCR. However, DNA from these strains did not yield the expected amplicon with the primer set of BR1f/L1r for P. carotovorum subsp. brasiliense (Duarte et al. 2004) and Eca1f/Eca2r for P. atrosepticum (De Boer et al., 1995) by PCR. The sequence analysis of 16S rDNA (LC597917- LC597919) showed more than 98% identities to P. wasabiae strains (e.g. HAFL01 in Switzerland) by BLAST analysis. In addition, Multi-locus sequence analysis (Ma et al. 2007) was performed by MEGA6.06 using concatenated DNA sequences of seven housekeeping genes (aconitate hydratase(acnA, LC597925- LC597927), glyceraldehyde-3-phosphate dehydrogenase A(gapA, LC597972-LC597974), isocitrate dehydrogenase (icdA, LC597998- LC597998LC598000), malate dehydrogenase(mdh, LC598024- LC598026), mannitol-1-phosphate dehydrogenase (mtlD, LC598050- LC598052), glucose-6-phosphate isomerase (pgi, LC598076- LC598078) and gamma-glutamyl phospate reductase (proA, LC598099- LC598101)), and all clustered into a clade containing other confirmed strains of P. wasabiae. As a result, these three strains shared high identity with each other (>98%, E-Values showed 0). The clade containing these three strains was consistently placed in a larger clade with the other P. wasabiae and 100% bootstrap support for its separation from other Pectobacterium species available in GenBank when the consensus tree constructed using Maximum Likelihood method. Pathogenicity of these strains against onion (cv. ‘Hayate’) was confirmed by the field experiments with 5 weeks growth plants sprayed with bacterial suspension (1×107cfu/ml) resulting in soft rot on the plants about four weeks after inoculation, whereas water-inoculated plants remained symptomless. Strains re-isolated from the artificially diseased stems were confirmed as P. wasabiae using the methods as biochemical characterization and multiple genetic analyses. Based on the disease symptoms, the cultural, molecular, and pathological features of the strains, we conclude that the soft rot symptoms of onion in Hokkaido in 2019 were caused by P. wasabiae. To our knowledge, this is the first report of P. wasabiae as the soft rot disease agent of onion in Japan.


Author(s):  
Merve Çetin ◽  
Sabriye Belgüzar

This study was aimed at identification and prevalence of potato soft rot and black leg disease agent in the potato production areas of Tokat province. In March-August 2018, 67 field surveys were carried out in Central, Turhal, Zile, Pazar, Erbaa, Niksar, Artova and Basciftlik districts of Tokat. The disease incidences were 0.25%, 0.33%, 0.31%, 0.5%, 1%, and 8% in Central, Erbaa, Niksar, Pazar, Turhal, and Zile district, respectively. In Artova and Basciftlik districts, no disease was encountered. The following tests, pectolytic activity on potato, gram reaction, catalase, oxidase, growth at 37°C and 39°C, salt tolerance, hypersensitivity reaction were applied to isolates obtained from diseased plant and tuber samples. In the PCR assay, 19 isolates were produced 434 bp product with Y1/Y2 primers specific to Pectobacterium spp., and 3 isolates were produced 420 bp product with ADE1/ADE2 primers specific to Dickeya spp. The isolates resulted positive with Y1/Y2 primers weren’t produced PCR product with ECA1/ECA2 primers specific to Pectobacterium atrosepticum. According to this, 19 isolates were identified as Pectobacterium carotovorum. With this study, the causal agent of potato blackleg and soft rot disease have been identified in the potato production areas of Tokat. Further studies will be conducted to determine the species and subspecies level of the pathogens using specific primers.


Biljni lekar ◽  
2020 ◽  
Vol 48 (6) ◽  
pp. 610-618
Author(s):  
Marta Loc ◽  
Nemanja Delić ◽  
Dragana Budakov ◽  
Vera Stojšin ◽  
Mladen Petreš ◽  
...  

Bacteria from Enterobacteriaceae family (SRE) are significant problem in plant production, not only during vegetation, in the field, but also during storage and marketing of agricultural commodities. Species P. carotovorum subsp. brasiliense (Pcb) is a newly identified member of Enterobacteriaceae family. It causes soft rot of different plant species, including root vegetables. Pcb is described as a new subspecies of P. carotovorum due to differences in phenotypic and genotypic characteristic, more pronounced virulence and aggressiveness. Patohogenicity of this bacterium is based on the production of several enzymes: pectatliase, polygalacturonase, cellulase and proeteases. The aim of this study was to determine whether and at which rate Pcb isolates originating from potato plants exhibit pectolytic activity on root of different root vegetable species - carrot, radish, celery, kohlrabi and beetroot. The obtained data confirmed wide host range of the bacterium Pectobacterium carotovorum subsp. brasiliense, but pointed to significant differences in pectolytic activity on different species of root vegetables (carrot, radish, celery, kohlrabi), while on beetroot tested Pcb isolates did not exhibit pectolytic activity. Moreover, on same species of root vegetables different levels of pectolytic activity of tested Pcb isolates were recorded.


Fermentation ◽  
2019 ◽  
Vol 5 (4) ◽  
pp. 102 ◽  
Author(s):  
Barbara Speranza ◽  
Daniela Campaniello ◽  
Leonardo Petruzzi ◽  
Milena Sinigaglia ◽  
Maria Rosaria Corbo ◽  
...  

Eighty-seven yeasts were isolated from Bombino bianco, a white grape variety from Apulian Region (Southern Italy). The isolates were characterized for the splitting of arbutin, the hydrolysis of pectins, sulphite production, the resistance to acetic acid, SO2, and ethanol. An enhanced arbutin splitting (β-glucosidase) and a moderate pectolytic activity were found. Concerning ethanol resistance, the most of yeast population showed a low-to-moderate resistance, but some isolates, identified as Saccharomyces cerevisiae, were able to grow in presence of 15% v/v of ethanol. Four isolates were selected (coded as 43D, 44D, 45D, and 46D), studied for their ability to decarboxylate amino acids and used in small-scale fermentation trial; for this last experiment a reference strain was used (S. cerevisiae EC1118). This experiment suggested the existence of an isolate (S. cerevisiae 46D) with interesting traits and performances, which could be potentially proposed as a starter for Bombino bianco.


2019 ◽  
Vol 445 (1-2) ◽  
pp. 577-594 ◽  
Author(s):  
Bliss Ursula Furtado ◽  
Sonia Szymańska ◽  
Katarzyna Hrynkiewicz

Abstract Aim Plant-endophytic associations exist only when equilibrium is maintained between both partners. This study analyses the properties of endophytic fungi inhabiting a halophyte growing in high soil salinity and tests whether these fungi are beneficial or detrimental when non-host plants are inoculated. Method Fungi were isolated from Salicornia europaea collected from two sites differing in salinization history (anthropogenic and naturally saline) and analyzed for plant growth promoting abilities and non-host plant interactions. Results Most isolated fungi belonged to Ascomycota (96%) including dematiaceous fungi and commonly known plant pathogens and saprobes. The strains were metabolically active for siderophores, polyamines and indole-3-acetic acid (mainly Aureobasidium sp.) with very low activity for phosphatases. Many showed proteolytic, lipolytic, chitinolytic, cellulolytic and amylolytic activities but low pectolytic activity. Different activities between similar fungal species found in both sites were particularly seen for Epiccocum sp., Arthrinium sp. and Trichoderma sp. Inoculating the non-host Lolium perenne with selected fungi increased plant growth, mainly in the symbiont (Epichloë)-free variety. Arthrinium gamsii CR1-9 and Stereum gausapatum ISK3-11 were most effective for plant growth promotion. Conclusions This research suggests that host lifestyle and soil characteristics have a strong effect on endophytic fungi, and environmental stress could disturb the plant-fungi relations. In favourable conditions, these fungi may be effective in facilitating crop production in non-cultivable saline lands.


Plant Disease ◽  
2014 ◽  
Vol 98 (1) ◽  
pp. 153-153 ◽  
Author(s):  
B. J. Li ◽  
H. L. Li ◽  
Y. X. Shi ◽  
X. W. Xie

A suspect bacterial leaf spot on vegetable sponge gourd (Luffa cylindrical (L.) Roem.) was found in a commercial greenhouse in Pi County, Chengdu City, Sichuan Province, China, in February 2011. Approximately 20 to 30% of plants were affected, causing serious economic loss. Symptoms occurred only on seedlings and consisted of water-soaked, irregularly shaped, black lesions on the surface and margins of cotyledons. A bacterium was consistently isolated on nutrient agar from diseased leaf tissues that had been surface disinfected in 70% ethyl alcohol for 30 s. The bacterium produced small gray colonies with smooth margins, was gram negative, fluoresced on King's B medium, and showed pectolytic activity when inoculated on potato slices. The partial sequences of 16SrRNA gene (1,377 bp) of the bacterium (GenBank Accession No. KC762217), amplified by using universal PCR primers 16SF (5′-AGAGTTTGATCCTGGCTCAG-3′) and 16SR (5′-GGTTACCTTGTTACGACTT-3′), shared 100% similarity with that of Pseudomonas cichorii (GenBank Accession No. HM190228). The vegetable sponge gourd isolate was also identified by using the Biolog Microbial Identification System (version 4.2, Biolog Inc., Hayward, CA) as P. cichorii with the following characteristics (1): negative for arginine dihydrolase, gelatin liquefaction, and N2 production. Positive reactions were obtained in tests for catalase, oxidase, potato rot, utilization of melibiose, and mannitol. Tests were negative for utilization of sucrose, trehalose, D-arabinose, raffinose, cellobiose, and rhamnose. A pathogenicity test was conducted on 4-week-old vegetable sponge gourd plants by spray-inoculation with 108 CFU/ml sterile distilled water on the leaves of 15 vegetable sponge gourd plants and by needle puncture on the stems of 15 other plants with P. cichorii, respectively. Control plants were misted with sterile distilled water or punctured on the stem with a clean needle. Plants were placed in a greenhouse maintained at 28 ± 2°C with relative humidity of 80 to 85%. Symptoms, the same as seen on the original diseased plants, developed after 7 to 10 days on inoculated plants. Control plants remained healthy. The bacterium was readily re-isolated from inoculated plants and identified as P. cichorii using P. cichorii-specific primer hrpla/hrp2a (1). To our knowledge, this is the first report of P. cichorii causing disease on commercially grown vegetable sponge gourd in China. This new finding will provide the basis for developing resources for diagnostics and management, including screening varieties for resistance. References: (1) S. Mazurier et al. J. FEMS Microbiol. Ecol. 49:455, 2004. (2) N. W. Schaad et al., eds. Laboratory Guide for Identification of Plant Pathogenic Bacteria, 3rd ed. APS Press, St. Paul, MN, 2001.


2013 ◽  
Vol 53 (1) ◽  
pp. 32-36 ◽  
Author(s):  
Monika Kałużna ◽  
Joanna Puławska ◽  
Beata Meszka

Abstract In 2011, leaf spot disease was observed on the blueberry (Vaccinium corymbosum) cv. Nelson growing on a commercial field located in Central Poland. The disease symptoms could be seen as russet brown, irregular spots. The diameter of the spots was 0.3-0.5 cm, and the spots often coalesced. From these leaf spots, a fluorescent bacterium was repeatedly isolated in almost pure culture. Polymerase chain reaction (PCR) using primers Ps-for and Ps-rev, specific for Pseudomonas spp. confirmed that they belong to this genus. Based on LOPAT tests [levan production from sucrose (L), presence of oxidase (O), pectolytic activity on potato (P), the presence of arginine dihydrolase (A), hypersensitivity reaction on tobacco (T)], 6 isolates were classified to the LOPAT group Ib - group of Pseudomonas syringae subsp. savastanoi and Pseudomonas delphini, and one isolate to group Ia - P. syringae. All isolates caused a hypersensitivity reaction on tobacco plants, and symptoms similar to those under natural conditions, when young leaves of blueberry cv. Nelson were inoculated. Sequence analysis of 16S rRNA and rpoB genes showed the highest similarity of 6 studied strains to the species P. avellanae. Further taxonomic study is necessary to enable definitive classification of these isolates. It is the first time that a bacterial disease caused by the Pseudomonas spp. was observed in Poland.


Plant Disease ◽  
2010 ◽  
Vol 94 (1) ◽  
pp. 132-132 ◽  
Author(s):  
W. P. Wechter ◽  
A. P. Keinath ◽  
M. W. Farnham ◽  
J. P. Smith

In May of 2009, leaf spot and leaf blight symptoms were observed on broccoli (Brassica oleracea var. italica) and cabbage (B. oleracea var. capitata) on several farms in Lexington County, the major brassica-growing region of South Carolina. Affected areas ranged from scattered disease foci within fields to entire fields. Initial infection symptoms on leaves of both crops included circular and irregular-shaped necrotic lesions that were 3 to 10 mm in diameter, often with yellow halos and water soaking. As the disease progressed, the lesions tended to coalesce into a general blight of the entire leaf. Diseased leaves from both broccoli and cabbage were collected from each of four fields at different locations in the county. Leaves were surface disinfested, macerated in sterile distilled water, then aliquots of the suspension were spread on King's medium B (KB) agar. All samples produced large numbers of bacterial colonies that fluoresced blue under UV light after 24 h of growth. In total, 23 isolates (13 from broccoli and 10 from cabbage) were collected. These isolates were gram negative, levan production positive, oxidase negative, pectolytic activity negative, arginine dihydrolase negative, and produced a hypersensitive response on tobacco, thus placing them in the Pseudomonas syringae LOPAT group (2). Two broccoli and two cabbage isolates were selected at random and tested for pathogenicity to cabbage cv. Early Jersey Wakefield, broccoli cv. Decicco, turnip cv. Topper, broccoli raab cv. Spring, collard cv. Hi-Crop, and oat cv. Montezuma in greenhouse tests. Bacteria were grown on KB agar for 24 h and a bacterial suspension was prepared and adjusted to an optical density of 0.1 at 600 nm. Three-week-old plants were spray inoculated to runoff and held at 100% relative humidity for 12 h after inoculation, prior to return to the greenhouse bench (4). P. syringae pv. maculicola strain F18 (4) and the pathotype strain of P. syringae pv. alisalensis BS91 were included as controls, along with a water-inoculated negative control. Plants were evaluated at 14 days postinoculation. The four unknown bacterial isolates and BS91 were pathogenic on all brassica plants tested, as well as on oat. In contrast, the P. syringae pv. maculicola strain F18 was not pathogenic on broccoli raab or oat. Symptoms produced by all isolates and strains tested were similar to those observed in the field. No symptoms were observed on water-inoculated plants. Comparative repetitive sequence-based (rep)-PCR DNA analysis using the BOXA1R primer (3) resulted in a DNA banding pattern of each of the isolates from the South Carolina fields (23 isolates), as well as those reisolated from inoculated plants, that was identical to P. syringae pv. alisalensis BS91 and differed from the P. syringae pv. maculicola F18 strain. On the basis of the rep-PCR assays and the differential host range (1), the current disease outbreak on broccoli and cabbage in South Carolina is caused by the bacterium P. syringae pv. alisalensis. Broccoli is a relatively new, albeit rapidly expanding, production vegetable in South Carolina; this disease may represent a limiting factor to future production. References: (1) N. A. Cintas et al. Plant Dis. 86:992, 2002. (2) R. A. Lelliott et al. J. Appl. Bacteriol. 29:470, 1966. (3) J. Versalovic et al. Methods Mol. Cell. Biol. 5:25, 1994. (4) Y. F. Zhao et al. Plant Dis. 84:1015, 2000.


Sign in / Sign up

Export Citation Format

Share Document