scholarly journals Enzyme-Functionalized Cellulose Beads as a Promising Antimicrobial Material

2021 ◽  
Author(s):  
Davide Califano ◽  
Bethany Lee Patenall ◽  
Marco A.S. Kadowaki ◽  
Davide Mattia ◽  
Janet L. Scott ◽  
...  
2009 ◽  
Vol 38 (10) ◽  
pp. 1466-1470 ◽  
Author(s):  
Ki-Myong Kim ◽  
Kwon-Tack Hwang ◽  
Sang-Guan You ◽  
Ung-Soo Lee ◽  
Kyung-Hwan Jung ◽  
...  

2020 ◽  
Vol 20 (11) ◽  
pp. 1276-1287 ◽  
Author(s):  
Tran Q. Huy ◽  
Pham T.M. Huyen ◽  
Anh-Tuan Le ◽  
Matteo Tonezzer

Background: Silver nanoparticles (AgNPs) are well-known as a promising antimicrobial material; they have been widely used in many commercial products against pathogenic agents. Despite a growing concern regarding the cytotoxicity, AgNPs still have attracted considerable interest worldwide to develop a new generation of diagnostic tool and effective treatment solution for cancer cells. Objective: This paper aims to review the advances of AgNPs applied for cancer diagnosis and treatment. Methods: The database has been collected, screened and analysed through up-to-date scientific articles published from 2007 to May 2019 in peer-reviewed international journals. Results: The findings of the database have been analysed and divided into three parts of the text that deal with AgNPs in cancer diagnosis, their cytotoxicity, and the role as carrier systems for cancer treatment. Thanks to their optical properties, high conductivity and small size, AgNPs have been demonstrated to play an essential role in enhancing signals and sensitivity in various biosensing platforms. Furthermore, AgNPs also can be used directly or developed as a drug delivery system for cancer treatment. Conclusion: The review paper will help readers understand more clearly and systematically the role and advances of AgNPs in cancer diagnosis and treatment.


2021 ◽  
Author(s):  
Alexander Caschera ◽  
JULIE MCAULEY ◽  
Youry Kim ◽  
DAMIAN PURCELL ◽  
Jasper Rymenants ◽  
...  

A commercially available and EPA/PMRA registered quaternary ammonium antimicrobial formulation was applied to stainless steel carrier disks and sent to two virology research institutes to independently determine whether samples treated with SiQAC-C18 antimicrobial material could deactivate deposited SARS-CoV-2 virions on contaminated surfaces. The results independently support a sustained antiviral effect imparted from these treated surfaces by both SARS-CoV-2 virion destruction and degradation of viral RNA. These preliminary results indicate the SiQAC-18 treated surfaces could play an important role in mitigating the communicability and fomite transmission of SARS-CoV-2.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1457 ◽  
Author(s):  
Chia-Chun Wang ◽  
Ting-Yu Shih ◽  
Yi-Ting Hsieh ◽  
Jie-Len Huang ◽  
Jane Wang

This study focuses on the development and evaluation of a novel wound dressing material. l-arginine grafted poly(glycerol sebacate) materials (PGS-g-Arg) are developed by chemical conjugation of l-arginine on poly(glycerol sebacate) chains and the mechanical property, water vapor transmission rate, antimicrobial functions and biocompatibility are investigated. At various l-arginine grafting ratio, the mechanical properties are tunable. It was found that between 7–13% l-arginine grafting ratios, the tensile strengths of PGS-g-Arg were similar to that of natural skin. These materials are shown with a low water vapor transmission rate, 6.1 to 10.3 g/m2/h, which may form a barrier and assist in the closure of wounds. Inhibition in the growth of Pseudomonas aeruginosa and Staphylococcus aureus was observed on PGS-g-Arg, and a series of experiments were conducted to confirm its biocompatibility. In summary, l -arginine grafted poly(glycerol sebacate) may offer a novel option for wound dressing.


2020 ◽  
Vol 8 (4) ◽  
pp. 1089-1100 ◽  
Author(s):  
Eunice Chee ◽  
Ashley C. Brown

Antibiotic drugs have revolutionized the field of medicine for almost 90 years. However, continued use has led to the rise of antibiotic resistant bacteria. To combat these bacteria, biomimetic material strategies have been investigated.


2011 ◽  
Vol 44 (5) ◽  
pp. 478-483 ◽  
Author(s):  
Ho-Sung Moon ◽  
Yeon-Kye Kim ◽  
Moon-Hee Lee ◽  
Na-Young Yoon ◽  
Doo-Seog Lee ◽  
...  

2021 ◽  
Vol 2120 (1) ◽  
pp. 012012
Author(s):  
Y X Koh ◽  
H L Choo ◽  
Y H Wong ◽  
C H Yeong

Abstract A recent study showed that at least 50% of nosocomial infections are due to medical indwelling devices like surgical guides and prosthetics. This amounts to about 2 million patients affected a year. The reason for such statistics is the growth of microorganisms on the surfaces of the medical devices. There have been many attempts to create antimicrobial materials but most materials are unable to hold more than one antimicrobial agent without a secondary process. The study related to antimicrobial material with more than one type of agent is rarely found in literature. Hence, the objective of this project is to produce an antimicrobial material that can hold more than one antimicrobial agent without the need for a secondary process. The material is produced by sulfonating high impact polystyrene (HIPS) and attaching copper and silver ions. The optimum time of sulfonation of the HIPS was determined by the degree of sulfonation and ion exchange capacity. Then, the sulfonated HIPS were loaded with both copper and silver ions at different ratios. The 6-hour sample yielded the highest degree of sulfonation and ionic exchange capacity of 33.7% and 2.57 meq/g, respectively. In future work, the characterization of the 6-hour sulfonated HIPS sample loaded with copper and silver ions at different concentration ratios will be performed using TGA, DSC and FTIR spectroscopy. Lastly, the efficacy of the antimicrobial properties of the sulfonated HIPS will be tested using different bacterial strains.


2021 ◽  
Vol 3 ◽  
Author(s):  
Declan C. Mullen ◽  
Xing Wan ◽  
Timo M. Takala ◽  
Per E. Saris ◽  
V. M. Moreira

The overall expectation from an antimicrobial surface has been high considering the need for efficiency in preventing the attachment and growth of pathogenic microbes, durability, safety to both humans and environment as well as cost-effectiveness. To date, antimicrobial surface design has been mostly conducted liberally, without rigorous consideration of establishing robust structure-activity relationships for each design strategy or of the use intended for a specific antimicrobial material. However, the variability among the domain bacteria, which is the most diverse of all, alongside the highly dynamic nature of the bacteria-surface interface have taught us that the likelihood of finding universal antimicrobial surfaces is low. In this perspective we discuss some of the current hurdles faced by research in this promising field, emphasizing the relevance and complexity of probing the bacteria-surface interface, and explain why we feel it would greatly benefit from a more streamlined ad-hoc approach.


Sign in / Sign up

Export Citation Format

Share Document