scholarly journals Effects of Montmorillonite and Gentamicin Addition on the Properties of Electrospun Polycaprolactone Fibers

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6905
Author(s):  
Ewa Stodolak-Zych ◽  
Roksana Kurpanik ◽  
Ewa Dzierzkowska ◽  
Marcin Gajek ◽  
Łukasz Zych ◽  
...  

Electrospinning was used to obtain multifunctional fibrous composite materials with a matrix of poly-ɛ-caprolactone (PCL) and 2 wt.% addition of a nanofiller: montmorillonite (MMT), montmorillonite intercalated with gentamicin sulphate (MMTG) or gentamicin sulphate (G). In the first stage, the aluminosilicate gallery was modified by introducing gentamicin sulfate into it, and the effectiveness of the intercalation process was confirmed on the basis of changes in the clay particle size from 0.5 µm (for MMT) to 0.8 µm (for MMTG), an increase in the interplanar distance d001 from 12.3 Å (for MMT) to 13.9 Å (for MMTG) and altered clay grain morphology. In the second part of the experiment, the electrospinning process was carried out in which the polymer nonwovens with and without the modifier were prepared directly from dichloromethane (DCM) and N,N-dimethylformamide (DMF). The nanocomposite fibrous membranes containing montmorillonite were prepared from the same polymer solution but after homogenization with the modifier (13 wt.%). The degree of dispersion of the modifier was evaluated by average microarray analysis from observed area (EDS), which was also used to determine the intercalation of montmorillonite with gentamicin sulfate. An increase in the size of the fibers was found for the materials with the presence of the modifier, with the largest diameters measured for PCL_MMT (625 nm), and the smaller ones for PCL_MMTG (578 nm) and PCL_G (512 nm). The dispersion of MMT and MMTG in the PCL fibers was also confirmed by indirect studies such as change in mechanical properties of the nonwovens membrane, where the neat PCL nonwoven was used as a reference material. The addition of the modifier reduced the contact angle of PCL nonwovens (from 120° for PCL to 96° for PCL_G and 98° for PCL_MMTG). An approximately 10% increase in tensile strength of the nonwoven fabric with the addition of MMT compared to the neat PCL nonwoven fabric was also observed. The results of microbiological tests showed antibacterial activity of all obtained materials; however, the inhibition zones were the highest for the materials containing gentamicin sulphate, and the release time of the active substance was significantly extended for the materials with the addition of montmorillonite containing the antibiotic. The results clearly show that the electrospinning technique can be effectively used to obtain nanobiocomposite fibers with the addition of nonintercalated and intercalated montmorillonite with improved strength and increased stiffness compared to materials made only of the polymer fibers, provided that a high filler dispersion in the spinning solution is obtained.

Nano LIFE ◽  
2012 ◽  
Vol 02 (04) ◽  
pp. 1230010 ◽  
Author(s):  
JEN-CHIEH WU ◽  
H. PETER LORENZ

Electrospinning is a process for generating micrometer or nanometer scale polymer fibers with large surface areas and high porosity. For tissue engineering research, the electrospinning technique provides a quick way to fabricate fibrous scaffolds with dimensions comparable to the extracellular matrix (ECM). A variety of materials can be used in the electrospinning process, including natural biomaterials as well as synthetic polymers. The natural biomaterials have advantages such as excellent biocompatibility and biodegradability, which can be more suitable for making biomimic scaffolds. In the last two decades, there have been growing numbers of studies of biomaterial fibrous scaffolds using the electrospinning process. In this review, we will discuss biomaterials in the electrospinning process and their applications in tissue engineering.


2017 ◽  
Vol 5 (36) ◽  
pp. 19151-19158 ◽  
Author(s):  
Yan Wang ◽  
Jiang Li ◽  
Jianyang Sun ◽  
Yanbin Wang ◽  
Xu Zhao

Flexible Cu–Al2O3 membranes with high Fenton catalytic performance have been fabricated via electrospinning technique.


2020 ◽  
Vol 9 (1) ◽  
pp. 9-19
Author(s):  
Ida Sriyanti ◽  
Meily P Agustini ◽  
Jaidan Jauhari ◽  
Sukemi Sukemi ◽  
Zainuddin Nawawi

The purposes of this research were to investigate the synthesized Nylon-6 nanofibers using electrospinning technique and their characteristics. The method used in this study was an experimental method with a quantitative approach. Nylon-6 nanofibers have been produced using the electrospinning method. This fiber was made with different concentrations, i.e. 20% w/w (FN1), 25% w/w (FN2), and 30% w/w (FN3). The SEM results show that the morphology of all nylon-6 nanofibers) forms perfect fibers without bead fiber. Increasing fiber concentration from 20% w/w to 30% w/w results in bigger morphology and fiber diameter. The dimensions of the FN1, FN2, and FN3 fibers are 1890 nm, 2350 nm, and 2420 nm, respectively. The results of FTIR analysis showed that the increase in the concentration of nylon-6 (b) and the electrospinning process caused a peak shift in the amide II group (CH2 bond), the carbonyl group and the CH2 stretching of the amide III group from small wave numbers to larger ones. The results of XRD characterization showed that the electrospinning process affected the changes in the XRD pattern of nylon-6 nanofiber (FN1, FN2, and FN3) in the state of semi crystal. Nylon-6 nanofibers can be used for applications in medicine, air filters, and electrode for capacitors


2020 ◽  
Vol 859 ◽  
pp. 220-225
Author(s):  
Natthan Charernsriwilaiwat ◽  
Thapakorn Chareonying ◽  
Praneet Opanasopit

Electrospinning technique is widely investigated in medical applications such as tissue engineering scaffolds, wound dressing and drug delivery. In this study, the aligned nanofiber scaffold of Eudragit RS100 was successfully fabricated via electrospinning technique for nerve tissue engineering scaffold. The diameter distribution and degree of alignment of Eudragit RS100 nanofiber scaffold were observed by scanning electron microspore (SEM). The chemical and crystalline structure of Eudragit RS100 nanofiber scaffold were analyzed using Fourier transform infrared spectroscopy (FTIR) and Powder X-ray diffactometer (PXRD). Cell culture studies using rat Schwann cells were determined to evaluate cell proliferation cell alignment and morphology. The results implied that the diameter of fiber was in the nanometer region. The Eudragit RS100 nanofiber scaffold were in an amorphous form and its chemical structure was not destructive after the electrospinning process. The Eudragit RS100 nanofiber scaffold showed biocompatibility with rat Schwann cells and growing parallel to the aligned fibers. In conclusion, the Eudragit RS100 nanofiber scaffold may have the ability to apply to nerve tissue engineering scaffold.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Katrina M. Hatch ◽  
Jana Hlavatá ◽  
Katherine Paulett ◽  
Tatsiana Liavitskaya ◽  
Sergey Vyazovkin ◽  
...  

Nanocellulose/polyvinylpyrrolidone (nCel/PVP) fibrous composite materials containing rod-like nanocrystalline cellulose particles with the lengths varying in the range from 100 to 2000 nm were prepared by using DC electrospinning. The particle size had a strong effect on the precursor viscosity, process efficiency, and resulting fiber diameter. The thermal crosslinking of nCel/PVP composite nanofibers with up to 1.0 :  8.0 nCel/PVP weight ratio resulted in fibrous membranes with textural, air transport, and mass swelling properties varying significantly with the size of cellulose particles. The presence of nCel particles increased the oxidation resistance of PVP during the crosslinking and affected the morphological changes of nCel/PVP fibrous membranes in aqueous solutions. Particles with the smallest size improved the strength of the membrane but decreased its mass swelling capacity, whereas the larger particles led to a more porous and flexible, but mechanically weaker, membrane structure with a higher swelling ability. Thus, by using the nCel particles of different size and shape, the properties of nCel/PVP composite fibrous membranes can be tailored to a specific application.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2086
Author(s):  
Pedro J. Rivero ◽  
Iker Rosagaray ◽  
Juan P. Fuertes ◽  
José F. Palacio ◽  
Rafael J. Rodríguez

In this work, the electrospinning technique is used for the fabrication of electrospun functional fibers with desired properties in order to show a superhydrophobic behavior. With the aim to obtain a coating with the best properties, a design of experiments (DoE) has been performed by controlling several inputs operating parameters, such as applied voltage, flow rate, and precursor polymeric concentration. In this work, the reference substrate to be coated is the aluminum alloy (60661T6), whereas the polymeric precursor is the polyvinyl chloride (PVC) which presents an intrinsic hydrophobic nature. Finally, in order to evaluate the coating morphology for the better performance, the following parameters—such as fiber diameter, surface roughness (Ra, Rq), optical properties, corrosion behavior, and wettability—have been deeply analyzed. To sum up, this is the first time that DoE has been used for the optimization of superhydrophobic or anticorrosive surfaces by using PVC precursor for the prediction of an adequate surface morphology as a function of the input operational parameters derived from electrospinning process with the aim to validate better performance.


2020 ◽  
Vol 63 ◽  
pp. 89-97
Author(s):  
Saleh Eesaa Jasim ◽  
Mohamad Ashry Jusoh ◽  
Muhammad Aizat Kamarudin ◽  
Fahmiruddin Esa ◽  
Rodziah Nazlan

Superconductivity in nanostructured ceramics offers significant advantages over the conventional coarse-grained materials in view of miniaturization of superconducting electronic devices. In this paper, we report the formation of four morphologies of superconducting YBa2Cu3O7-δ (YBCO) nanostructures by electrospinning technique using polymeric polyvinyl pyrrolidone (PVP) solutions of different molecular weight and altering the total content of the metallic precursors. The morphologies prepared using this strategy are nanorods (NRs), nanogarlands (NGs), nanohierarchical (NH), and nanoparticles (NPs). Alternating current susceptibility measurements showed high critical temperatures (TC ~90 K) for the NH YBCO synthesized using PVP of the lowest molecular weight; whereas the YBCO NRs synthesized using a higher molecular weight polymer showed the lowest TC (82 K). A relationship between the particulate properties and TC was also observed – the lower is the pore size the higher is the TC. The YBCO NGs showed the highest specific surface area (7.06 m2/g) with intermediate TC (88 K). Electrospinning process appears an effective and controllable technique to produce different nanomorphologies with intrinsic properties suitable for practical applications.


2014 ◽  
Vol 14 (4) ◽  
pp. 554-560 ◽  
Author(s):  
S. P. Suriyaraj ◽  
M. Benasir Begam ◽  
S. G. Deepika ◽  
P. Biji ◽  
R. Selvakumar

The present study investigates the development of titanium dioxide (TiO2)/polyacrylonitrile (PAN) nanofiber membrane for the removal of nitrate from aqueous solution by photocatalysis. The TiO2 nanoparticles were synthesized by conventional sol–gel method followed by blending them into PAN polymer. The blended solution was electrospun into nanofiber using the co-electrospinning technique. The nanoparticle, PAN nanofibers and the TiO2 impregnated nanofibers were characterized using suitable techniques like X-ray diffraction, high-resolution transmission electron microscopy and scanning electron microscopy attached with energy dispersive X-ray spectroscopy. The average size and the diameter of the TiO2 nanoparticles and TiO2/PAN nanofibers were found to be 22 ± 0.32 nm and 90 ± 15 nm respectively. TiO2 nanoparticles and TiO2/PAN nanofibers showed maximum nitrate removal of 74.67 and 39% respectively at 10 mg/L nitrate concentration at pH 4. However at higher concentration (50 mg/L), the nitrate removal was found to be only 16.87%. The experimental data were fitted onto pseudo second-order kinetic model. The impregnation of TiO2 nanoparticles into the PAN nanofibers by co-electrospinning techniques lead to higher removal of nitrate in aqueous solution at lower concentration (10 mg/L and below). However at higher concentration, the TiO2/PAN nanofiber membrane was inefficient to remove nitrate.


Sign in / Sign up

Export Citation Format

Share Document