oncogenic property
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 8)

H-INDEX

9
(FIVE YEARS 1)

Author(s):  
Ashutosh Singh ◽  
Ashutosh Kumar Singh ◽  
Rajanish Giri ◽  
Dhruv Kumar ◽  
Rohit Sharma ◽  
...  

MicroRNAs (miRNAs), a class of small noncoding RNA, posttranscriptionally regulate the expression of genes. Aberrant expression of miRNA is reported in various types of cancer. Since the first report of oncomiR-21 involvement in the glioma, its upregulation was reported in multiple cancers and was allied with high oncogenic property. In addition to the downregulation of tumor suppressor genes, the miR-21 is also associated with cancer resistance to various chemotherapy. The recent research is appraising miR-21 as a promising cancer target and biomarker for early cancer detection. In this review, we briefly explain the biogenesis and regulation of miR-21 in cancer cells. Additionally, the review features the assorted genes/pathways regulated by the miR-21 in various cancer and cancer stem cells.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Wuyi Wang ◽  
Jinlai Wei ◽  
Hairong Zhang ◽  
Xiangru Zheng ◽  
He Zhou ◽  
...  

AbstractColorectal cancer is the most common gastrointestinal cancer and causes severe damage to human health. PRDX2 is a member of the peroxiredoxin family reported to have a high level of expression in colorectal cancer. However, the mechanisms by which PRDX2 promotes the proliferation of colorectal cancer are still unclear. Here, the results indicated that PRDX2 expression was upregulated in colorectal cancer and closely correlated with poor prognosis. Functionally, PRDX2 promoted the proliferation of colorectal cancer cells. Mechanistically, PRDX2 could bind RPL4, reducing the interaction between RPL4 and MDM2. These findings demonstrate that the oncogenic property of PRDX2 may be attributed to its regulation of the RPL4-MDM2-p53 pathway, leading to p53 ubiquitinated degradation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hyeon Ju Lee ◽  
So Ra Kim ◽  
Yu-Jin Jung ◽  
Jeong A. Han

AbstractMuch in vivo evidence indicates that cyclooxygenase-2 (COX-2) is deeply involved in tumorigenesis. Although it has been proposed that COX-2-derived pro-inflammatory prostanoids mediate the tumorigenic activity of COX-2, the tumorigenic mechanisms of COX-2 are not yet fully understood. Here, we investigated the mechanism by which COX-2 causes transformation from normal cells to malignant cells by using normal murine or human cells. We found that COX-2 inhibits the pro-senescent function of p53 under oncogenic RAS activation, by which it prevents oncogene-induced senescence (OIS) and induces neoplastic transformation. We also found that COX-2 physically interacts with p53 in the nucleus under oncogenic RAS activation, and that this COX-2-p53 interaction rather than the catalytic activity is involved in the COX-2-mediated inhibition of the pro-senescent function of p53 and OIS, and induction of neoplastic transformation. These findings strongly suggest that the oncogenic property of COX-2 is closely related to its ability to inactivate p53 under strong mitogenic signals, and that aberrant activation of the COX-2/a mitogenic oncogene combination can be a potent driving force for tumorigenesis. This study might contribute to our understanding of the molecular basis for the tumorigenic activity of COX-2 and the development of novel anti-tumor drugs targeting COX-2-p53 interactions.


Author(s):  
Yan Zhao ◽  
Qiangsheng Dai ◽  
Xiaohong Fu ◽  
Qianqi Chen ◽  
Yueqiang Tang ◽  
...  

2020 ◽  
Author(s):  
Yimin Ma ◽  
Wei Zheng

Abstract We aimed to explore role of lncRNA PAX-interacting protein 1- antisense RNA1(PAXIP1-AS1) in ovarian cancer (OC). RT-qPCR analysis identified upregulation of PAXIP1-AS1 in OC cell lines. Functionally, PAXIP1-AS1 knockdown inhibited cell proliferation, accelerated cell apoptosis, and suppressed cell migration and epithelial-mesenchymal transition (EMT) process. Upregulation PAXIP1-AS1 was induced by CBP-mediated H3K27 acetylation (H3K27ac) via bioinformatic analysis and ChIP assay. Furthermore, PAXIP1-AS1 served as a competing endogenous RNA (ceRNA) to regulate PCBP2 expression by sponging microRNA-6744-5p (miR-6744-5p). Restoration experiments showed that overexpressed PCBP2 rescued effect of silenced PAXIP1-AS1 on cell proliferation, apoptosis, migration and EMT. Overall, lncRNA PAXIP1-AS1 activated by H3K27ac functioned as a tumor promoter in OC via mediating miR-6744-5p/PCBP2 axis, which provided promising insight into exploration on OC therapy.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1242-1242
Author(s):  
Stella Amanda ◽  
Regina Wong ◽  
Tze King Tan ◽  
Muhammad Zulfaqar Ali ◽  
Yan Li ◽  
...  

Introduction The transcription factor IRF4, a member of Interferon Regulatory Factor (IRF) family, is a critical regulator for the production of functional B and T lymphocytes. The dysregulation of IRF4 expression has been frequently implicated in various mature B- and T-lymphoid malignancies such as multiple myeloma and peripheral T-cell lymphomas in which IRF4 acts as an oncogene. However, in vivo model systems to investigate the oncogenic property of IRF4 has not been established. One of common downstream targets of IRF4 across different cancers is the oncogene, MYC, which promotes cell proliferation. Other downstream targets or collaborating factors of IRF4 in these malignancies have not been fully elucidated. Here, we established the first transgenic animal model for IRF4-induced lymphoma, which displays multiple spectrum of tumors providing an in vivo platform to study IRF4 oncogenicity. Methods and Results To identify the specific lineages and stages of the hematopoietic cells that can be transformed by IRF4, we utilized the zebrafish lck promoter, which is active both in T- and B-lymphocytes. We overexpressed human IRF4 gene in zebrafish under this promoter along with a fluorescent marker gene. We confirmed successful expression of both IRF4 and marker genes in the lymphocyte population. Strikingly, multiple F0 transgenic zebrafish showed an expansion of fluorescent signals arising from the thymus by 5 months, while control fish showed thymic involution after 4 months. Approximately 20% of F1 animals developed lymphoma within 5 months and progressed to leukemia by 8 months. Histopathological examination revealed massive infiltration of abnormal lymphocytes into skin, spinal cord, muscles, and liver, which resembles clinical and pathological features observed in several types of human mature T-cell neoplasms. Interestingly, the tumor onset and progression were significantly accelerated when crossed with p53e7/e7-mutant fish, which possesses transactivation-dead p53 variant. This reveals the synergy between IRF4 expression and p53 loss of function, which have also been observed in several types of human lymphomas. Notably, analysis of gene expression profiles using the single-cell RNA-sequencing platform revealed a simultaneous development of both B- and T-cell tumors, which consist of multiple clones at the early stage of tumorigenesis. T-cell-derived tumors became dominant at the late stage of tumorigenesis. Importantly, the expressions of mycb, the zebrafish orthologue of human MYC, as well as of other lymphoid transcription factors were highly upregulated in those tumors in parallel with IRF4 expression. Conclusion Our study demonstrated that IRF4 serves as a driver oncogene in the development of T- and B-cell malignancies. IRF4 accelerates the tumor progression by taking advantage of the impaired function of p53, as demonstrated by massive infiltration into distal organs recapitulating human lymphomas. Taken together, our zebrafish IRF4 model provides a very powerful platform to investigate the plausible mechanisms and pathways through which IRF4 exert its oncogenic property in lymphomagenesis. Disclosures Iida: Teijin Pharma: Research Funding; Astellas: Research Funding; Gilead: Research Funding; Sanofi: Research Funding; MSD: Research Funding; Abbvie: Research Funding; Kyowa Kirin: Research Funding; Chugai: Research Funding; Novartis: Honoraria, Research Funding; Bristol-Myers Squibb: Honoraria, Research Funding; Daichi Sankyo: Honoraria, Research Funding; Takeda: Honoraria, Research Funding; Celgene: Honoraria, Research Funding; Janssen: Honoraria, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document