Role of Cell Hydrophobicity on Colony Formation in Microcystis (Cyanobacteria)

2011 ◽  
Vol 96 (2) ◽  
pp. 141-148 ◽  
Author(s):  
Hualin Yang ◽  
Yuanfeng Cai ◽  
Meng Xia ◽  
Xingyu Wang ◽  
Limei Shi ◽  
...  
2016 ◽  
Vol 2016 ◽  
pp. 1-6
Author(s):  
Michael J. Jarrett ◽  
Andres Vázquez-Torres ◽  
Daniel N. Frank ◽  
Bruce D. McCollister ◽  
Patrick K. Henthorn ◽  
...  

Objective. Gelatin-thrombin matrix (GTM) tissue sealant use was previously identified as an independent predictor of pelvic infection following hysterectomies. We aim to elucidate contributing factors by assessing influence of GTM on bacterial colony formation and characterizing bacteria present at the vaginal cuff.Methods.Escherichia coliwas incubated in phosphate-buffered saline (PBS) and pelvic washings with and without GTM to assess influence on colony formation. Pelvic washings of the vaginal cuff were collected from hysterectomies occurring from June through October 2015.In vitrotechniques, 16S rRNA gene qPCR, and 16S amplicon sequencing were performed with washings to characterize bacteria at the vaginal cuff.Results. Mean bacterial colony formation in PBS was greater forE. coliincubated in the presence of GTM (1.48 × 107 CFU/mL) versus without (9.95 × 105 CFU/mL) following 20-hour incubation (p=0.001). Out of 61 pelvic washings samples, 3 were culture positive (≥5000 CFU/mL) withEnterococcus faecalis.Conclusion.In vitroexperiments support a facilitating role of GTM on colony formation ofE. coliin PBS. However, given the negative results of surgical site washings following adequate disinfection, the role of GTM in promoting posthysterectomy pelvic infections may be limited. Analysis of pelvic washings revealed presence ofE. faecalis, but results were inconclusive. Further studies are recommended.


2013 ◽  
Vol 16 (1) ◽  
pp. 70-82 ◽  
Author(s):  
Anastasia Spyropoulou ◽  
Antonios Gargalionis ◽  
Georgia Dalagiorgou ◽  
Christos Adamopoulos ◽  
Kostas A. Papavassiliou ◽  
...  

BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Lei Li ◽  
Shuai Zhang ◽  
Hao Li ◽  
Haiyan Chou

Abstract Background Overexpression of fibroblast growth factor receptor 3 (FGFR3) has been linked to tumor progression in many types of cancer. The role of FGFR3 in melanoma remains unclear. In this study, we aimed to uncover the role of FGFR3 in the growth and metastasis of melanoma. Methods FGFR3 knockdown and overexpression strategies were employed to investigate the effects of FGFR3 on colony formation, cell apoptosis, proliferation, migration, and in vitro invasion, along with the growth and metastasis of melanoma in a xenografts mouse model. The protein expression levels of extracellular signal-regulated kinase (ERK), protein kinase B (AKT), epidermal growth factor receptor (EGFR), and epithelial-mesenchymal transition (EMT) markers were determined by Western blot analysis. Results The mRNA expression of FGFR3 was higher in melanoma tissues than normal healthy tissues. FGFR3 expression in cutaneous malignant melanoma (CMM) tissues was positively correlated with the Breslow thickness and lymph node metastasis. In A357 cells, knockdown of the FGFR3 gene decreased the colony formation ability, cell proliferation, invasion, and migration, but increased the caspase 3 activity and the apoptosis rate; overexpression of FGFR3 increased the colony formation ability, cell proliferation, invasion, and migration, but decreased the caspase 3 activity and apoptosis rates. FGFR3 knockdown also upregulated E-cadherin, downregulated N-cadherin and vimentin, and decreased the phosphorylation levels of ERK, AKT, and EGFR. In the MCC xenografts mice, knockdown of FGFR3 decreased tumor growth and metastasis. Conclusions FGFR3, which is highly expressed in CMM tissues, is correlated with increased Breslow thickness and lymph node metastasis. FGFR3 promotes melanoma growth, metastasis, and EMT behaviors, likely by affecting the phosphorylation levels of ERK, AKT, and EGFR.


Blood ◽  
1986 ◽  
Vol 67 (6) ◽  
pp. 1607-1610
Author(s):  
Z Estrov ◽  
C Roifman ◽  
YP Wang ◽  
T Grunberger ◽  
EW Gelfand ◽  
...  

To analyze the role of T lymphocytes in human erythropoiesis, we evaluated the effect of recombinant interleukin 2 (IL 2) on marrow CFU- E and BFU-E colony formation in vitro. IL 2 resulted in an increase in CFU-E and BFU-E colony numbers in a dose-dependent manner. This increase could be prevented by anti-Tac, a monoclonal antibody to the IL 2 receptor. Moreover, anti-Tac on its own resulted in an overall decrease in colony numbers. Depletion of marrow adherent cells did not alter the effect of either IL 2 or anti-Tac on colony growth. Following the removal of marrow T lymphocytes, CFU-E and BFU-E colony formation proceeded normally; however, the effects of IL 2 and anti-Tac were markedly diminished. Readdition of T lymphocytes to the cultures restored the IL 2 effect. Although T lymphocytes were not themselves essential for in vitro erythropoiesis, our studies suggest that IL 2 and IL 2-responsive T cells can regulate both early and mature stages of erythroid differentiation.


2021 ◽  
Vol 11 ◽  
Author(s):  
Suzhen Wang ◽  
Tianning Yang ◽  
Zhengxiang He

BackgroundThe involvement of microRNA-338-5p in modulating NPC pathogenesis is still largely unknown, and this study aimed to investigate this issue.MethodsThe expressions of cancer associated genes were determined by Real-Time qPCR and Western Blot, and cell apoptosis was determined by flow cytometer (FCM). CCK-8 assay and colony formation assay were respectively used to determine cell proliferation and colony formation abilities. Transwell assay was used to evaluate cell migration. The expression levels of Ki67 protein in mice tissues were measured by Immunohistochemistry (IHC) assay.ResultsThe present study found that microRNA-338-5p suppressed NPC progression by degrading its downstream target, Wnt family member 2B (WNT2B). Specifically, microRNA-338-5p tended to be low-expressed in NPC tissues and cell lines, compared to the non-tumor nasopharyngeal mucosa tissues and normal nasopharyngeal cell line (NP69). Upregulation of microRNA-338-5p inhibited proliferation, mobility, and epithelial-mesenchymal transition (EMT) in NPC cells in vitro, while silencing of microRNA-338-5p had opposite effects. Consistently, microRNA-338-5p suppressed tumorigenesis of NPC cells in vivo. In addition, microRNA-338-5p targeted WNT2B for degradation and inhibition, and the inhibiting effects of microRNA-338-5p overexpression on NPC development were reversed by upregulating WNT2B.ConclusionsTaken together, we concluded that microRNA-338-5p targeted WNT2B to hinder NPC development.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Rui Hu ◽  
Shan Chen ◽  
Jianxin Yan

Abstract Background CircRNA CNST (circ-CNST) is a newly identified biomarker for prognosis of osteosarcoma (OS). However, its role in OS progression remains to be well documented. Methods Expression of circ-CNST, microRNA (miR)-578, lactate dehydrogenase A (LDHA), and pyruvate dehydrogenase kinase 1 (PDK1) was detected by quantitative real-time polymerase chain reaction and Western blotting. The physical interaction was confirmed by dual-luciferase reporter assay. Cell behaviors and glycolysis were measured by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay, colony formation assay, flow cytometry, transwell assays, xenograft experiment, and commercial kits. Results Circ-CNST was upregulated in human OS tissues and cells, accompanied with downregulation of miR-578 and upregulation of LDHA and PDK1. There were negative correlations between miR-578 expression and circ-CNST or LDHA/PDK1 in OS tissues. Moreover, high circ-CNST/LDHA/PDK1 or low miR-578 might predict shorter overall survival, advanced TNM stages, and lymph node metastasis. Physically, miR-578 was targeted by circ-CNST, and miR-578 could target LDHA/PDK1. Functionally, blocking circ-CNST and restoring miR-578 enhanced apoptosis rate and suppressed cell proliferation, colony formation, migration, and invasion in 143B and U2OS cells, accompanied with decreased glucose consumption, lactate production, and adenosine triphosphate (ATP)/adenosine diphosphate (ADP) ratio. Furthermore, in vivo growth of U2OS cells was retarded by silencing circ-CNST. Depletion of miR-578 could counteract the suppressive role of circ-CNST deficiency in 143B and U2OS cells, and restoring LDHA or PDK1 partially reversed the role of miR-578 inhibition as well. Conclusion Circ-CNST knockdown could antagonize malignant behaviors and glycolysis of OS cells by regulating miR-578-LDHA/PDK1 axes.


2020 ◽  
Vol 19 ◽  
pp. 153303382092701
Author(s):  
Guochen Zhang ◽  
Junlan Wang ◽  
Ruilin Zheng ◽  
Beibei Song ◽  
Li Huang ◽  
...  

Triple-negative breast cancer shows worse outcome compared with other subtypes of breast cancer. The discovery of dysregulated microRNAs and their roles in the progression of triple-negative breast cancer provide novel strategies for the treatment of patients with triple-negative breast cancer. In this study, we identified the significant reduction of miR-133 in triple-negative breast cancer tissues and cell lines. Ectopic overexpression of miR-133 suppressed the proliferation, colony formation, and upregulated the apoptosis of triple-negative breast cancer cells. Mechanism study revealed that the YES Proto-Oncogene 1 was a target of miR-133. miR-133 bound the 3′-untranslated region of YES Proto-Oncogene 1 and decreased the level of YES Proto-Oncogene 1 in triple-negative breast cancer cells. Consistent with miR-133 downregulation, YES1 was significantly increased in triple-negative breast cancer, which was inversely correlated with the level of miR-133. Restoration of YES Proto-Oncogene 1 attenuated the inhibitory effects of miR-133 on the proliferation and colony formation of triple-negative breast cancer cells. Consistent with the decreased expression of YES Proto-Oncogene 1, overexpression of miR-133 suppressed the phosphorylation of YAP1 in triple-negative breast cancer cells. Our results provided novel evidence for the role of miR-133/YES1 axis in the development of triple-negative breast cancer, which indicated miR-133 might be a potential therapeutic strategy for triple-negative breast cancer.


1979 ◽  
Author(s):  
W. Vainehenker ◽  
J. Breton-Gorius

We have recently realized megakaryocyte (MK) colony formation in culture from blood and bone marrow progenitors using the plasma clot technique. In this study, the MK stimulating factor was an erythropoietin (Epo) either a poorly purified one(step III from anaemic sheep serum, a crude serum from anaemic mice, an urinary human Epo) or a highly purified one (GOLDWASSER). Similar results were obtained with all these Epo. A linear relationship was found between the number of colonies and seeded cells. However with less than 5.105 plated cells from the blood, no MK colonies were obtained, although erythroid colonies could be grown. In contrast, without Epo, spontaneous colonies could be observed which represented 1/5 th of the maximum plating efficiency , in these eases no erythroid colonies were present. These data suggest that Epo itself acts an a MK colony stimulating factor; but is not the only factor involved in the formation of MK colonies. This in vitro technique will be useful of in determining the factors regulating megakaryocytopoiesis.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 470-470
Author(s):  
Mani Mohindru ◽  
Perry Pahanish ◽  
Efstratios Katsoulidis ◽  
Robert Collins ◽  
Thomas Rogers ◽  
...  

Abstract Cytokines such as TNF α, IFN γ and others have been implicated in the pathogenesis of ineffective hematopoiesis in MDS and are thought to lead to the high rate of apoptosis in hematopoietic progenitors. The p38 Mitogen Activated Protein Kinase (MAPK) is an evolutionary conserved enzyme that is involved in many cellular processes including stress signaling. We have previously shown that the p38 MAP kinase is strongly activated by IFNs, TNF α, TGF β and other inhibitory cytokines in normal primary hematopoietic progenitors and plays an important role in the negative regulation of normal hematopoiesis. In the present study, we determined the role of the p38 MAPK in the pathogenesis of MDS evaluated its inhibition as a potential therapeutic strategy in this disease. p38 MAPK inhibition was achieved by the use of a novel p38 inhibitor - SD-282, a specific inhibitor of p38α MAP kinase. SD-282 performs very similarly in animal and cell models to a p38 inhibitor now in the clinic. We also transfected primary hematopoietic cells with flurescent labeled siRNAs against p38 and successfully downregulated the levels of the protein. Using these approaches, we demonstrate that pharmacological inhibition of the p38 MAPK can reverse the growth inhibitory effects of TNF α and IFN γ on erythroid and myeloid colony formation. This reversal of TNF α mediated inhibition correlates with significant reduction of apoptosis seen in human hematopoeitic progenitors pretreated with p38 inhibitor SD-282. Having established the importance of p38 MAPK in cytokine mediated inhibition of normal hematopoiesis, we performed colony forming assays with bone marrow CD34+ cells from 8 patients with MDS in the presence of either pharmacologic or siRNA based inhibitors of p38. All patients had refractory cytopenias with multilineage dysplasia. Our data indicates that SD-282 treatment strongly enhances both erythroid and myeloid colony formation in MDS CD34+ bone marrow cells in vitro. This increase was not observed when these progenitors were grown in the presence of negative controls - SB 202474 and the MEK inhibitor PD 98059. Similarly, an increase in hematopoietic colony formation, though of a lesser magnitude was seen when MDS bone marrow progenitors were transfected with siRNAs against p38 MAPK. To further determine the role of cytokines in the pathogenesis of MDS, we also used bone marrow derived sera from the same MDS patients. Our studies show exposure to patient derived sera led to the phosphorylation/activation of p38 MAPK in normal hematopoietic progenitors when compared to sera from healthy volunteers. Our studies also demonstrate that bone marrow derived sera from MDS patients can inhibit erythroid and myeloid colony formation of normal hematopoietic progenitors. This inhibition can be reversed by blocking p38 MAPK using SD-282, other p38 inhibitors and siRNAs. This finding confirms the role of marrow cytokine /serum factors in the ineffective hematopoiesis seen in MDS and suggests the importance of p38 MAPK activation in this phenomenon. Thus our studies show the p38 MAPK may be a common effector of inhibitory cytokine signaling in normal and MDS hematopoietic cells. These results provide a strong rationale for using p38 inhibition as a novel treatment strategy for MDS. Supported by Harris Methodist Foundation Grant, VISN-17 New Investigator Grant and VA Research Corp Grant to AV.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2411-2411
Author(s):  
Youngme Yoon ◽  
Ashley N. Kamimae-Lanning ◽  
Kelsie Storm ◽  
Natalya A Goloviznina ◽  
Peter Kurre

Abstract Fanconi Anemia (FA) is a rare, recessively heritable disorder with prominent failure of hematopoiesis. The physiologic role of FA proteins has not been fully resolved to date. While several existing model systems delineate its role in DNA damage response caused by alkylating agents, aldehydes, and inflammatory cytokines, all rely on experimental induction. We previously demonstrated the in utero onset of hematopoietic failure in mice with genetic disruption of Fancc. Herein, we found significant deficits in the fetal liver (FL) hematopoietic stem and progenitor cell (HSPC) pool in Fancd2 mice. Both AA4.1+ Sca-1+ Lin- expressing progenitors (ASL) and CD48- CD150+ Lin- Sca-1+ (SLAM) cells were decreased in frequency in Fancd2-/- versus WT FL. Similarly, we observed a significant decrease in progenitor colony formation and deficits in primary and secondary transplantation among Fancd2-/- FL compared to WT. Fancd2-/- FL cells were characteristically sensitive to mitomycin C and had significantly fewer SLAM cells in the G0 phase of cell cycle and elevated p21 expression, indicating canonical P53 activation. Consistent with prior reports by other groups on embryonic stem cells and our own Fancc-/- FL studies, we found neither exaggerated frequency of apoptotic cells, nor transcriptional induction of Puma or Noxa. We hypothesized that the observed deficits in developmental HSPC pool expansion reflect replication-associated stress. At the transcriptional level, we found activation of the DNA damage response via Rad51 and Prkdc, corroborated by immunofluorescent imaging of Rad51 foci as well as comet assays in FL cells. Next, we tested P38 MAPK as a stress response previously found to confer repopulation deficits in postnatal BM failure among Fancc and Fanca mice; here, our experiments revealed baseline (unprovoked) activation of phospho-p38 and rescue of Fancd2-/- progenitor colony formation using a pharmacological inhibitor, SB203580. Results were further strengthened by transplantation, revealing increased Fancd2-/- donor chimerism after in vivo administration of SB203580. The gains in donor chimerism persisted even after cessation of drug administration. These results suggest that replication-associated stress in the rapidly cycling fetal Fancd2-/- HSPC pool evokes a cellular stress response that constrains physiological expansion. Our work emphasizes the prenatal onset of hematopoietic failure and reveals pharmacological rescue by inhibition of constitutively active P38 MAPK. Furthermore, FA fetal hematopoiesis is an original model of unprovoked hematopoietic failure that allows the study of physiologic role of FA proteins in HSPC. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document