Proteins linked to drought tolerance revealed by DIGE analysis of drought resistant and susceptible barley varieties

PROTEOMICS ◽  
2012 ◽  
Vol 12 (22) ◽  
pp. 3374-3385 ◽  
Author(s):  
Charlotte Wendelboe-Nelson ◽  
Peter C. Morris
2021 ◽  
Vol 12 ◽  
Author(s):  
Vivek Ambastha ◽  
Ifat Matityahu ◽  
Dafna Tidhar ◽  
Yehoram Leshem

Rab proteins are small GTPases that are important in the regulation of vesicle trafficking. Through data mining, we identified RabA2b to be stress responsive, though little is known about the involvement of RabA in plant responses to abiotic stresses. Analysis of the RabA2b native promoter showed strong activity during osmotic stress, which required the stress hormone Abscisic acid (ABA) and was restricted to the vasculature. Sequence analysis of the promoter region identified predicted binding motifs for several ABA-responsive transcription factors. We cloned RabA2b and overexpressed it in Arabidopsis. The resulting transgenic plants were strikingly drought resistant. The reduced water loss observed in detached leaves of the transgenic plants could not be explained by stomatal aperture or density, which was similar in all the genotypes. Subcellular localization studies detected strong colocalization between RabA2b and the plasma membrane (PM) marker PIP2. Further studies of the PM showed, for the first time, a distinguished alteration in the PM proteome as a result of RabA2b overexpression. Proteomic analysis of isolated PM fractions showed enrichment of stress-coping proteins as well as cell wall/cuticle modifiers in the transgenic lines. Finally, the cuticle permeability of transgenic leaves was significantly reduced compared to the wild type, suggesting that it plays a role in its drought resistant properties. Overall, these data provide new insights into the roles and modes of action of RabA2b during water stresses, and indicate that increased RabA2b mediated PM trafficking can affect the PM proteome and increase drought tolerance.


Author(s):  
K. Manoj Kumar ◽  
S. Vincent ◽  
A. Mothilal ◽  
M. Raveendran ◽  
R. Anandham ◽  
...  

Drought affects the rainfed groundnut (Arachis hypogaea L.)  at different phases of development and it is the serious threats on groundnut productivity causing losses than any other abiotic factor under rainfed agriculture. In the world's semiarid regions, groundnut accounts for 90% of worldwide production. Drought mainly affects the pace and pattern of nutrient and water intake from the soil, affecting the architecture of the groundnut root system. Plant selections with desirable root trait have been a major focus in developing drought resistant Groundnut cultivars. In 2019, 60 groundnut genotypes were cultivated in root block design with two different soil water treatments, as well as in the field during the year under same circumstances. The purpose of this study was to see how different groundnut cultivars fared in terms of yield, yield contributing features, root characters, and their relationships with drought tolerance. Drought resistant genotypes had thicker roots, larger roots, and a deeper root system than susceptible genotypes. Recent series in groundnut genotypes of 60 numbers were sown during kharif 2019 (july-september) under rainfed condition (It includes life irrigation and rainfall received during cropping season). Groundnut genotypes were semi spreading with the duration of 110-120 days. Observation on root morphological character viz., roots length, root volume after 20 days of stress imposition of the crop and yield parameters were observed at the harvest. Among the 60 genotypes, 20 genotypes (VG 17008, VG 17046, VG 18005, VG 18102, VG 18077, VG 19572, VG 19709, VG 18111, VG19561, VG19576, VG 19620, VG 19681, VG 19688 etc.,) similarly, yield character were observed for 60 genotypes and all the genotypes given above recorded higher value in Total number of pods per plant, Number of double seeded pods per plant, Pod yield per plant, Harvest index and Total dry matter production. The methods used in this study identified correlation between yield character and root characters. Groundnut genotypes by assessing yield metrics and their relationship with root trait. These findings lay the groundwork for future study aimed at deciphering the molecular pathways underpinning Groundnut drought resistance.


2021 ◽  
pp. 46-50
Author(s):  
G. Ya. Krivosheev ◽  
N. А. Shevchenko

The directions of the economic use of maize are different, namely fodder, food, technical. Considering that maize belongs to mesophytes, the most harmful stress factor for it is drought. The breeding maize for drought tolerance is considered the most important direction for this crop. The purpose of the current paper was to present study results of the drought resistance of the initial material, namely the self-pollinated maize lines and hybrids. The study was carried out at the Agricultural Research Center “Donskoy”, located in the zone of insufficient moisture in 2018–2020. Drought tolerance was determined by the method of residual water deficit (RWD). As an initial material, there were used 24 self-pollinated maize lines and 50 test-cross hybrids. There have been identified the new drought-resistant middle-early and middle-ripening self-pollinated lines ‘KS 317 A’,’ KV 240’, ‘LSh 16’, ‘S 86’, ‘LSh 17’ and ‘LSh 2’, ‘SP 246 / 276-2’, ‘DS 498 / 203-4’, ‘DS 298 / 203-3’, ‘DS 257 / 85-0’, ‘SP 280-3’, ‘KB 373’, which had a low residual water deficit in the flowering phase (7.7–10.4%) and did not significantly increase it during the period from vegetation to milky-wax ripeness (up to 10,3–12.6%). The drought-resistant hybrids include ‘Stepnyak MV’, ‘GK 26 AM × DS 257 / 85-0’, ‘P 101 × Zp 498 A’, ‘KB 399 × S 232’, ‘GK 26 AM × KB 373’, ‘GK 26 AM × SP 246 / 276-2’, ‘C 204 × KS 318’. They were characterized by a low water deficit during the flowering period (7.4–10.4%) and its low increase (1.4–3.7%) during the growing season. Drought-resistant hybrids, as a rule, included drought-resistant lines. According to the results of the State Variety Testing, the new middle-ripening three-line maize hybrid ‘Stepnyak MV’ ((KB 262 M × KB 326 ZM) × KB 498 MV)), developed on the basis of the drought-resistant lines ‘KB 262 M’ and ‘KB 498 MV’, has been included into the State Register since 2019. The hybrid possessed a high grain yield (4.55 t/ha) in the dry years of 2018–2020. it was characterized by high values of the main economically valuable traits, such as high resistance to lodging (0.5% of lodged plants), high starch content in grain (72.0%), optimum grain moisture (14.0%) by the harvesting time.


2020 ◽  
Author(s):  
Wei Wang ◽  
Lei Wang ◽  
Ling Wang ◽  
Meilian Tan ◽  
Collins O. Ogutu ◽  
...  

Abstract Background Oil flax (Linum usitatissimum L.) also as known as linseed is one of the most important oil crops in the world. Although linseed was reported to show better tolerance to abiotic stress conditions compared to other oil crops, the molecular mechanisms underlying linseed tolerance to drought stress are largely unknown. Moreover, as a result of climate change, drought dramatically reduces linseed yield and quality, but so far very little is known about how linseed coordinates the drought-resistant genes expression of response to different level of drought stress on the genome-wide level. Results To explore the transcriptional response of linseed to drought stress (DS) and repeated drought stress (RD), we first determined the drought tolerance of different linseed varieties. Then we performed full-length transcriptome sequencing of drought-resistant variety (Z141) and drought-sensitive variety (NY-17) using single-molecule real-time sequencing and RNA-sequencing under drought stress (DS) and repeated drought stress (RD) at the seedling stage. Gene Ontology (GO) enrichment analysis showed that compared with NY-17, the up-regulated genes of Z141 were enriched in more functional pathways related to plant drought tolerance under drought stress. In addition, the number of up-regulated genes in linseed under RD was more 30% than it under DS. In addition, a total of, 4,436 linseed transcription factors were identified, of these, 1,190 genes were responsive to stress treatments. Finally, the expression patterns of proline biosynthesis and DNA repair structural genes were verified by RT- PCR. Conclusions Drought tolerance of Z141 may be related to its specifically up-regulated drought tolerance genes under drought stress. Several variable physiological responses occurred in repeated than in sustained drought treatment. Sum up, this study provides a new perspective to understand the drought adaptability of linseed.


2020 ◽  
pp. 94-98
Author(s):  
A. A. Kochubey ◽  
R. Sh. Zaremuk

Relevance. The aim of the research was to determine the physiological characteristics of the manifestation of resistance to stress factors (drought) of new hybrid forms of domestic plum and the allocation of the most drought-resistant in the environmental conditions of southern gardening.Methods. The article presents the results of drought tolerance studies of six promising hybrid forms of home plum (17–1-55, 17–1-69, 17–2-64, 17–2-78, 17–2-81, 17–3-79), concentrated in the genetic collection of SKFNTSVV. The main indicators characterizing the varieties and hybrids of home plum were determined as drought tolerant — the water content of the leaves and the water holding capacity of the leaves under conditions of summer moisture deficiency.Results. The water content of leaf tissue of hybrid forms in the hottest period (second — third decade of July) was heterogeneous. The highest water content in tissues was observed in hybrid seedlings 17–2-64 (63.1%) and 17–2-81 (59.6%). The smallest value was observed in the hybrid 17–3-79 and amounted to 49.7%. According to the data obtained, it was concluded that the studied hybrid forms do not differ in high water content, with the exception of hybrid 17–2-64, in which the water content can be characterized as above average. It was found that the water retention capacity of most hybrid forms is average. The total water content after withering in the studied hybrids was more than 80%. The greatest decrease in the amount of water in the leaves was observed in hybrids 17–1-55 (18.9%), 17–2-64 (18.5%), 17–3-79 (18.4%); the smallest — in hybrids 17–1-69 (13.3%), 17–2-78 (13.6%), which indicates a highwater retention capacity of the last two hybrids. With a general assessment of the hybrid fund of home plum, it was found that most hybrids studied have low hydration of leaf tissue and average water retention capacity. Based on this, two drought-resistant hybrid forms were identified: 17–1-69 and 17–2-78, which, despite the low water content, are distinguished by good water-holding ability in comparison with other hybrids and, as a consequence, the conservation of leaf turgor.


2013 ◽  
Vol 138 (4) ◽  
pp. 277-282 ◽  
Author(s):  
Kemin Su ◽  
Justin Q. Moss ◽  
Guolong Zhang ◽  
Dennis L. Martin ◽  
Yanqi Wu

Drought stress is a major limiting factor for warm-season turfgrass growth during the summer in the U.S. transition zone. Genotypic variation in drought resistance exists among bermudagrasses (Cynodon sp.), but the mechanisms of drought resistance are poorly understood. Our objectives were to investigate physiological changes in three bermudagrass cultivars under a well-watered condition and drought stress. to determine expression differences in soluble protein and dehydrin of the three cultivars under well-watered and drought stress conditions, and to identify the association between dehydrin proteins and drought tolerance. Grasses included a high drought-resistant cultivar, Celebration, a low drought-resistant cultivar, Premier, and a newly released cultivar, Latitude 36. In both well-watered and drought treatments, ‘Latitude 36’ had the highest visual quality and lower or medium electrolyte leakage among three cultivars. In the drought treatment, 16- and 23-kDa dehydrin proteins were observed in ‘Latitude 36’ but not in ‘Celebration’ or ‘Premier’. Our results indicate that the 16- and 23-kDa dehydrin expressions could be associated with drought tolerance and contribute to drought tolerance in bermudagrass.


2020 ◽  
Vol 21 (3) ◽  
pp. 772 ◽  
Author(s):  
Salah E. Abdel-Ghany ◽  
Fahad Ullah ◽  
Asa Ben-Hur ◽  
Anireddy S. N. Reddy

Drought is a major limiting factor of crop yields. In response to drought, plants reprogram their gene expression, which ultimately regulates a multitude of biochemical and physiological processes. The timing of this reprogramming and the nature of the drought-regulated genes in different genotypes are thought to confer differential tolerance to drought stress. Sorghum is a highly drought-tolerant crop and has been increasingly used as a model cereal to identify genes that confer tolerance. Also, there is considerable natural variation in resistance to drought in different sorghum genotypes. Here, we evaluated drought resistance in four genotypes to polyethylene glycol (PEG)-induced drought stress at the seedling stage and performed transcriptome analysis in seedlings of sorghum genotypes that are either drought-resistant or drought-sensitive to identify drought-regulated changes in gene expression that are unique to drought-resistant genotypes of sorghum. Our analysis revealed that about 180 genes are differentially regulated in response to drought stress only in drought-resistant genotypes and most of these (over 70%) are up-regulated in response to drought. Among these, about 70 genes are novel with no known function and the remaining are transcription factors, signaling and stress-related proteins implicated in drought tolerance in other crops. This study revealed a set of drought-regulated genes, including many genes encoding uncharacterized proteins that are associated with drought tolerance at the seedling stage.


Agriculture ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 11
Author(s):  
Yonghui Lao ◽  
Yuan Dong ◽  
Yaqin Shi ◽  
Yahui Wang ◽  
Shutu Xu ◽  
...  

Drought is one of the most prevailing abiotic stresses affecting the growth, development, and productivity of maize. Knowledge of drought tolerance could help in maize improvement. However, less research has been done to comprehensively evaluate the drought tolerance of maize inbred lines. We used 27 elite maize inbred lines selected from Shaan A group and Shaan B group breeding populations to estimate their drought tolerance in 3 years 2 locations under normal field conditions and low irrigation. Using principal component analysis (PCA) and GGE biplots, all inbred lines, including the controls, could be divided into four types. Ten lines could be categorized as the high-yield drought-resistant type (‘KB081’, ‘KA105’, ‘KB417’, ‘KB215’, ‘KB-7’, ‘2013KB-37’, ‘KA203’, ‘2012KA-34’, ‘KA225’, and ‘91227’) because of their stability and wide adaptability. Compared with the controls, a large proportion of the inbred lines selected from Shaan A and Shaan B breeding populations demonstrated higher drought resistance. Our results suggest that multi-year drought screening can be used as a tool to improve the drought resistance of maize inbred lines and provide a scientific basis for making better use of the Shaan A and Shaan B maize inbred lines to breed new varieties and to identify existing drought-resistant maize varieties.


2021 ◽  
Vol 1 (1) ◽  
pp. 3-7
Author(s):  
Е. V. Ionova ◽  
V. А. Likhovidova ◽  
V. L. Gaze

The current paper has presented the study results on the change of adaptability to water and temperature stresses and the value of productivity according to the stages of variety changing. There have been selected 13 winter bread wheat varieties developed in the FSBSI Agricultural Research Center “Donskoy”. It was found that the varieties of the first stages of the variety changing (I–IV stage, 1950–1989) practically did not differ in the degree of drought tolerance and the value of productivity of winter bread wheat. In this regard, there was carried out an analysis of changes in the adaptability of winter wheat varieties starting from the V stage of the variety changing. The degree of drought tolerance increased from the weakly-medium drought-resistant varieties (37.4–51%) belonging to the V stage of the variety changing to highly drought-resistant samples (80.4–93.3%) belonging to the VII stage of the variety changing. There was a significant productivity increase of the winter bread wheat varieties zoned from 2010 to 2019 (the VII stage of the variety changing). The largest number of stomata per unit of leaf area in the V stage of the variety changing was identified in the variety ‘Don 95’ (12.2 pcs/mm2). In the VI stage of the variety changing, the largest value of this indicator was identified in the variety ‘Don 105’ (18.8 pcs/mm2), and in the variety ‘Krasa Dona’ (26.9 pcs/mm2) in the VII stage of the variety changing. The dry weight of roots of the varieties of the V stage of the variety changing varied from 1.18 (the variety ‘Donshchina’) to 1.41 g (the variety ‘Don 95’), while in varieties of the VI stage this indicator varied from 1.97 (the variety ‘Donskoy Mayak’) to 2.29 g (the variety ‘Don 105’), and the largest dry weight of roots was identified at the VII stage of the variety changing and ranged from 2.34 (the variety ‘Don 107’) to 2.79 (the variety ‘Asket’). The same regularity was established for the change in the amount of roots according to the stages of variety changing.


Sign in / Sign up

Export Citation Format

Share Document