scholarly journals The New DBpedia Release Cycle: Increasing Agility and Efficiency in Knowledge Extraction Workflows

Author(s):  
Marvin Hofer ◽  
Sebastian Hellmann ◽  
Milan Dojchinovski ◽  
Johannes Frey

Abstract Since its inception in 2007, DBpedia has been constantly releasing open data in RDF, extracted from various Wikimedia projects using a complex software system called the DBpedia Information Extraction Framework (DIEF). For the past 12 years, the software received a plethora of extensions by the community, which positively affected the size and data quality. Due to the increase in size and complexity, the release process was facing huge delays (from 12 to 17 months cycle), thus impacting the agility of the development. In this paper, we describe the new DBpedia release cycle including our innovative release workflow, which allows development teams (in particular those who publish large, open data) to implement agile, cost-efficient processes and scale up productivity. The DBpedia release workflow has been re-engineered, its new primary focus is on productivity and agility, to address the challenges of size and complexity. At the same time, quality is assured by implementing a comprehensive testing methodology. We run an experimental evaluation and argue that the implemented measures increase agility and allow for cost-effective quality-control and debugging and thus achieve a higher level of maintainability. As a result, DBpedia now publishes regular (i.e. monthly) releases with over 21 billion triples with minimal publishing effort .

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rachael Mooney ◽  
Wafa Abidi ◽  
Jennifer Batalla-Covello ◽  
Hoi Wa Ngai ◽  
Caitlyn Hyde ◽  
...  

Abstract Background Immortalized, clonal HB1.F3.CD21 human neural stem/progenitor cells (NSCs), loaded with therapeutic cargo prior to intraperitoneal (IP) injection, have been shown to improve the delivery and efficacy of therapeutic agents in pre-clinical models of stage III ovarian cancer. In previous studies, the distribution and efficacy of the NSC-delivered cargo has been examined; however, the fate of the NSCs has not yet been explored. Methods To monitor NSC tropism, we used an unconventional method of quantifying endocytosed gold nanorods to overcome the weaknesses of existing cell-tracking technologies. Results Here, we report efficient tumor tropism of HB1.F3.CD21 NSCs, showing that they primarily distribute to the tumor stroma surrounding individual tumor foci within 3 h after injection, reaching up to 95% of IP metastases without localizing to healthy tissue. Furthermore, we demonstrate that these NSCs are non-tumorigenic and non-immunogenic within the peritoneal setting. Conclusions Their efficient tropism, combined with their promising clinical safety features and potential for cost-effective scale-up, positions this NSC line as a practical, off-the-shelf platform to improve the delivery of a myriad of peritoneal cancer therapeutics.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 290
Author(s):  
Chih-Yu Cheng ◽  
Chia-Huang Tsai ◽  
Pei-Jyun Liou ◽  
Chi-Hang Wang

For pilot-scale production of chito-oligosaccharides, it must be cost-effective to prepare designable recombinant chitosanase. Herein, an efficient method for preparing recombinant Bacillus chitosanase from Escherichia coli by elimination of undesirable substances as a precipitate is proposed. After an optimized culture with IPTG (Isopropyl β-d-1-thiogalactopyranoside) induction, the harvested cells were resuspended, disrupted by sonication, divided by selective precipitation, and stored using the same solution conditions. Several factors involved in these procedures, including ion types, ionic concentration, pH, and bacterial cell density, were examined. The optimal conditions were inferred to be pH = 4.5, 300 mM sodium dihydrogen phosphate, and cell density below 1011 cells/mL. Finally, recombinant chitosanase was purified to >70% homogeneity with an activity recovery and enzyme yield of 90% and 106 mg/L, respectively. When 10 L of 5% chitosan was hydrolyzed with 2500 units of chitosanase at ambient temperature for 72 h, hydrolyzed products having molar masses of 833 ± 222 g/mol with multiple degrees of polymerization (chito-dimer to tetramer) were obtained. This work provided an economical and eco-friendly preparation of recombinant chitosanase to scale up the hydrolysis of chitosan towards tailored oligosaccharides in the near future.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3137
Author(s):  
Shuguang Guan ◽  
Qiaoli Pu ◽  
Yinan Liu ◽  
Honghong Wu ◽  
Wenbo Yu ◽  
...  

Crocins are highly valuable natural compounds for treating human disorders, and they are also high-end spices and colorants in the food industry. Due to the limitation of obtaining this type of highly polar compound, the commercial prices of crocins I and II are expensive. In this study, macroporous resin column chromatography combined with high-speed counter-current chromatography (HSCCC) was used to purify crocins I and II from natural sources. With only two chromatographic steps, both compounds were simultaneously isolated from the dry fruit of Gardenia jasminoides, which is a cheap herbal medicine distributed in a number of countries. In an effort to shorten the isolation time and reduce solvent usage, forward and reverse rotations were successively utilized in the HSCCC isolation procedure. Crocins I and II were simultaneously obtained from a herbal resource with high recoveries of 0.5% and 0.1%, respectively, and high purities of 98.7% and 99.1%, respectively, by HPLC analysis. The optimized preparation method was proven to be highly efficient, convenient, and cost-effective. Crocins I and II exhibited inhibitory activity against ATP citrate lyase, and their IC50 values were determined to be 36.3 ± 6.24 and 29.7 ± 7.41 μM, respectively.


2014 ◽  
Vol 31 (7) ◽  
pp. 788-810 ◽  
Author(s):  
Claudia Paciarotti ◽  
Giovanni Mazzuto ◽  
Davide D’Ettorre

Purpose – The purpose of this paper is to propose a cost-effective, time-saving and easy-to-use failure modes and effects analysis (FMEA) system applied on the quality control of supplied products. The traditional FMEA has been modified and adapted to fit the quality control features and requirements. The paper introduces a new and revised FMEA approach, where the “failure concept” has been modified with “defect concept.” Design/methodology/approach – The typical FMEA parameters have been modified, and a non-linear scale has been introduced to better evaluate the FMEA parameters. In addition, two weight functions have been introduced in the risk priority number (RPN) calculus in order to consider different critical situations previously ignored and the RPN is assigned to several similar products in order to reduce the problem of complexity. Findings – A complete procedure is provided in order to assist managers in deciding on the critical suppliers, the creation of homogeneous families overcome the complexity of single product code approach, in RPN definition the relative importance of factors is evaluated. Originality/value – This different approach facilitates the quality control managers acting as a structured and “friendly” decision support system: the quality control manager can easily evaluate the critical situations and simulate different scenarios of corrective actions in order to choose the best one. This FMEA technique is a dynamic tool and the performed process is an iterative one. The method has been applied in a small medium enterprise producing hydro massage bathtub, shower, spas and that commercializes bathroom furniture. The firm application has been carried out involving a cross-functional and multidisciplinary team.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1825
Author(s):  
Caiyang Wei ◽  
Theo Hofman ◽  
Esin Ilhan Caarls

For an electric vehicle (EV) with a continuously variable transmission (CVT), a novel convex programming (CP)-based co-design method is proposed to minimize the total-cost-of-ownership (TCO). The integration of the electric machine (EM) and the CVT is the primary focus. The optimized system with co-design reduces the TCO by around 5.9% compared to a non-optimized CVT-based EV (based on off-the-shelf components) and by around 2% compared to the EV equipped with a single-speed transmission (SST). By taking advantage of the control and design freedom provided by the CVT, the optimal CVT, EM and battery sizes are found to reduce the system cost. It simultaneously finds the optimal CVT speed ratio and air-flow rate of the cooling system reducing the energy consumption. The strength of co-design is highlighted by comparing to a sequential design, and insights into the design of a low-power EV that is energy-efficient and cost-effective for urban driving are provided. A highly integrated EM-CVT system, which is efficient, low-cost and lightweight, can be expected for future EV applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alisa Alekseenko ◽  
Donal Barrett ◽  
Yerma Pareja-Sanchez ◽  
Rebecca J. Howard ◽  
Emilia Strandback ◽  
...  

AbstractRT-LAMP detection of SARS-CoV-2 has been shown to be a valuable approach to scale up COVID-19 diagnostics and thus contribute to limiting the spread of the disease. Here we present the optimization of highly cost-effective in-house produced enzymes, and we benchmark their performance against commercial alternatives. We explore the compatibility between multiple DNA polymerases with high strand-displacement activity and thermostable reverse transcriptases required for RT-LAMP. We optimize reaction conditions and demonstrate their applicability using both synthetic RNA and clinical patient samples. Finally, we validate the optimized RT-LAMP assay for the detection of SARS-CoV-2 in unextracted heat-inactivated nasopharyngeal samples from 184 patients. We anticipate that optimized and affordable reagents for RT-LAMP will facilitate the expansion of SARS-CoV-2 testing globally, especially in sites and settings where the need for large scale testing cannot be met by commercial alternatives.


2021 ◽  
Author(s):  
Nicolas Le Guillarme ◽  
Wilfried Thuiller

1. Given the biodiversity crisis, we more than ever need to access information on multiple taxa (e.g. distribution, traits, diet) in the scientific literature to understand, map and predict all-inclusive biodiversity. Tools are needed to automatically extract useful information from the ever-growing corpus of ecological texts and feed this information to open data repositories. A prerequisite is the ability to recognise mentions of taxa in text, a special case of named entity recognition (NER). In recent years, deep learning-based NER systems have become ubiqutous, yielding state-of-the-art results in the general and biomedical domains. However, no such tool is available to ecologists wishing to extract information from the biodiversity literature. 2. We propose a new tool called TaxoNERD that provides two deep neural network (DNN) models to recognise taxon mentions in ecological documents. To achieve high performance, DNN-based NER models usually need to be trained on a large corpus of manually annotated text. Creating such a gold standard corpus (GSC) is a laborious and costly process, with the result that GSCs in the ecological domain tend to be too small to learn an accurate DNN model from scratch. To address this issue, we leverage existing DNN models pretrained on large biomedical corpora using transfer learning. The performance of our models is evaluated on four GSCs and compared to the most popular taxonomic NER tools. 3. Our experiments suggest that existing taxonomic NER tools are not suited to the extraction of ecological information from text as they performed poorly on ecologically-oriented corpora, either because they do not take account of the variability of taxon naming practices, or because they do not generalise well to the ecological domain. Conversely, a domain-specific DNN-based tool like TaxoNERD outperformed the other approaches on an ecological information extraction task. 4. Efforts are needed in order to raise ecological information extraction to the same level of performance as its biomedical counterpart. One promising direction is to leverage the huge corpus of unlabelled ecological texts to learn a language representation model that could benefit downstream tasks. These efforts could be highly beneficial to ecologists on the long term.


2021 ◽  
Author(s):  
Nima Safaei ◽  
Omar Smadi ◽  
Babak Safaei ◽  
Arezoo Masoud

<p>Cracks considerably reduce the life span of pavement surfaces. Currently, there is a need for the development of robust automated distress evaluation systems that comprise a low-cost crack detection method for performing fast and cost-effective roadway health monitoring practices. Most of the current methods are costly and have labor-intensive learning processes, so they are not suitable for small local-level projects with limited resources or are only usable for specific pavement types.</p> <p>This paper proposes a new method that uses an improved version of the weighted neighborhood pixels segmentation algorithm to detect cracks in 2-D pavement images. This method uses the Gaussian cumulative density function as the adaptive threshold to overcome the drawback of fixed thresholds in noisy environments. The proposed algorithm was tested on 300 images containing a wide range of noise representative of different noise conditions. This method proved to be time and cost-efficient as it took less than 3.15 seconds per 320 × 480 pixels image for a Xeon (R) 3.70 GHz CPU processor to determine the detection results. This makes the model a perfect choice for county-level pavement maintenance projects requiring cost-effective pavement crack detection systems. The validation results were promising for the detection of low to severe-level cracks (Accuracy = 97.3%, Precision = 79.21%, Recall= 89.18% and F<sub>1</sub> score = 83.9%).</p>


Author(s):  
Behnaz Nowrouzi ◽  
Rachel Li ◽  
Laura E. Walls ◽  
Leopold d’Espaux ◽  
Koray Malci ◽  
...  

AbstractCost-effective production of the highly effective anti-cancer drug, paclitaxel (Taxol®), remains limited despite growing global demands. Low yields of the critical taxadiene precursor remains a key bottleneck in microbial production. In this study, the key challenge of poor taxadiene synthase (TASY) solubility in S. cerevisiae was revealed, and the strains were strategically engineered to relieve this bottleneck. Multi-copy chromosomal integration of TASY harbouring a selection of fusion solubility tags improved taxadiene titres 22-fold, up to 57 ± 3 mg/L at 30 °C at shake flask scale. The scalability of the process was highlighted through achieving similar titres during scale up to 25 mL and 250 mL in shake flask and bioreactor cultivations, respectively. Maximum taxadiene titres of 129 ± 15 mg/L and 119 mg/L were achieved through shake flask and bioreactor cultivation, respectively, of the optimal strain at a reduced temperature of 20 °C. The results highlight the positive effect of coupling molecular biology tools with bioprocess variable optimisation on synthetic pathway development.HighlightsMaximum taxadiene titre of 129 ± 15 mg/L in Saccharomyces cerevisiae at 20 °CIntegrating fusion protein tagged-taxadiene synthase improved taxadiene titre.Consistent taxadiene titres were achieved at the micro-and mini-bioreactor scales.


2015 ◽  
Author(s):  
Marcin Cybulski ◽  
Adam Formela ◽  
Katarzyna Sidoryk ◽  
Olga Michalak ◽  
Anna Rosa ◽  
...  

One of the anthraquinone classes comprises compounds with a carbonyl group. These natural or synthetic anthraquinones find their application as building blocks in the synthesis of the compounds with a biological activity. Recently, 4-substituted anthra-9,10-quinone-1-carboxylic acids (2) have been used as key intermediates in the synthesis of patented compounds (3) with anticancer activity against multidrug resistant cell lines. Although 2,7-dihydro-3H-dibenz[de,h]cinnolin-3,7-diones (3) were successfully synthetized in a small laboratory scale, several problems were observed during the preparation of their acid intermediates (2) in a multi-gram scale. The known methods for the preparation of 2 are based on the oxidation of the methyl group in anthra-9,10-quinones (1). The most common are: the oxidation with the diluted nitric acid under high pressure in a sealed tube at the temperature of 195-220 oC, the oxidation in nitrobenzene by passing chlorine gas through the reaction mixture at the temperature of 160-170 oC or in a presence of the fuming sulphuric acid. The mentioned methods require aggressive reagents and specific reaction conditions including high pressure and temperature. Thus, there was a need to find a new efficient, cost-effective and reproducible synthetic method of preparation of 2. While searching literature it was found that the direct oxidation of alkylarenes mediated by the sodium periodate/lithium bromide combination produces benzyl acetates throughout benzyl bromides in the acetic acid, or benzylic acids in the diluted inorganic acid. Based on these results we examined a variety of reaction conditions with or without the bromine source and the oxidizing anion. As a result, a novel procedure for the preparation of highly pure 4-substituted anthra-9,10-quinone-1-carboxylic acids (HPLC > 99.5%) using oxidizing anion/ brominating reagent system was developed. It enabled 2 isolation by the simple filtration of the reaction mixture and was applied in the scale-up of 2,7-dihydro-3H-dibenz[de,h]cinnolin-3,7-dione derivatives.


Sign in / Sign up

Export Citation Format

Share Document