In situ Ablation of Solid Tumors by Electric Forces and Its Effect on the Tumor Microenvironment and Anti-tumor Immunity

2012 ◽  
pp. 133-153 ◽  
Author(s):  
Yona Keisari ◽  
Rafi Korenstein
2011 ◽  
Vol 208 (10) ◽  
pp. 1937-1940 ◽  
Author(s):  
David A. Schaer ◽  
Alexander M. Lesokhin ◽  
Jedd D. Wolchok

Tumors exploit many strategies to evade T cell–mediated destruction. For example, tumors can prevent T cell infiltration by modifying gene expression in the endothelial cells and pericytes that form their vasculature. New work showing that the T cell–attracting chemokine CCL2 can be posttranslationally modified in the tumor microenvironment adds another mechanism to the already formidable arsenal of immunoevasion tactics used by solid tumors.


2017 ◽  
Vol 23 (32) ◽  
pp. 4893-4905 ◽  
Author(s):  
Elena Voronov ◽  
Ron N. Apte

The importance of anti-tumor immunity in the outcome of cancer is now unequivocally established and recent achivements in the field have stimulated the development of new immunotherapeutical approaches. In invasive tumors, widespread inflammation promotes invasiveness and concomitantly also inhibits anti-tumor immune responses. We suggest that efficient tumor treatment should target both the malignant cells and the tumor microenvironment. Interleukin-1 (IL-1) is a pro-inflammatory as well as an immunostimulatory cytokine that is abundant in the tumor microenvironment. Manipulation of IL-1 can thus serve as an immunotherapeutical approach to reduce inflammation/immunosuppression and thus enhance anti-tumor immunity. The two major IL-1 agonistic molecules are IL-1α and IL-1β, which bind to the same IL-1 signaling receptor and induce the same array of biological activities. The IL-1 receptor antagonist (IL-Ra) is a physiological inhibitor of IL-1 that binds to its receptor without transmition of activation signals and thus serves as a decoy target. We have demonstrated that IL-1α and IL-1β are different in terms of the producing cells and their compartmentalization and the amount. IL-1α is mainly expressed intracellularly, in the cytosol, in the nucleus or exposed on the cell membrane, however, it is rarely secreted. IL-1β is active only as a secreted molecule that is mainly produced by activated myeloid cells. We have shown different functions of IL-1α and IL-1β in the malignant process. Thus, in its membrane- associated form, IL-1α is mainly immunostimulatory, while IL-1β that is secreted into the tumor microenvironment is mainly pro-inflammatory and promotes tumorigenesis, tumor invasiveness and immunosuppression. These distinct functions of the IL-1 agonistic molecules are mainly manifested in early stages of tumor development and the patterns of their expression dictate the direction of the malignant process. Here, we suggest that IL-1 modulation can serve as an effective mean to tilt the balance between inflammation and immunity in tumor sites, towards the latter. Different agents that neutralize IL-1, mainly the IL-Ra and specific antibodies, exist. They are safe and FDA-approved. The IL-1Ra has been widely and successfully used in patients with Rheumatoid arthritis, autoinflammatory diseases and various other diseases that have an inflammatory component. Here, we provide the rationale and experimental evidence for the use of anti-IL-1 agents in cancer patients, following first line therapy to debulk the major tumor's mass. The considerations and constraints of using anti-IL-1 treatments in cancer are also discussed. We hope that this review will stimulate studies that will fasten the application of IL-1 neutralization at the bedside of cancer patients.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A443-A443
Author(s):  
Gregory Durm ◽  
Sophia Frentzas ◽  
Erik Rasmussen ◽  
Saltanat Najmi ◽  
Nooshin Sadraei

BackgroundCheckpoint inhibitors are a promising therapy for patients with solid tumors; however, many patients require additional therapies to maximize clinical benefit or overcome resistance.1 The type-1 cytokine interleukin-21 (IL-21) is a promising candidate for combination and has shown clinical activity in melanoma and renal cell cancer.2 IL-21 has also shown improved efficacy when combined with anti-programmed death (PD)-1 antibodies in preclinical models.3 4 AMG 256 is a mutated IL-21 cytokine fused to an anti-PD-1 antibody to combine IL-21 pathway stimulation with checkpoint inhibition—a strategy that is designed to prime and extend the activity of cytotoxic and memory T cells and induce anti-tumor immunity. This first-in-human (FIH) study will assess safety, tolerability, and estimated dosing of AMG 256 monotherapy in patients with advanced solid tumors.MethodsThis is a FIH, multicenter, non-randomized, open-label, phase 1 study (NCT04362748) of AMG 256 in patients with advanced solid tumors. The planned sample size is approximately 100 patients in two parts: part 1 will evaluate safety, tolerability, pharmacokinetics (PK), pharmacodynamics, and determine the maximum tolerated dose (MTD), part 2 will evaluate the MTD determined in part 1 to further characterize the safety profile and preliminary tumor response. AMG 256 will be delivered by intravenous (IV) infusion. Enrollment criteria include adults with life expectancy of > 3 months, ECOG performance status ≤ 2, histologically or cytologically confirmed metastatic or locally advanced solid tumors not amenable to curative treatment with surgery or radiation, and at least one measurable lesion ≥ 10 mm that has not undergone biopsy within 3 months of screening scan. Exclusion criteria include primary brain tumor, untreated or symptomatic brain metastases, currently receiving treatment in another investigational device or drug study, or less than 28 days since ending treatment on another investigational device or drug study, history of solid organ transplantation or major surgery within 28 days of study day 1, live vaccine therapy within 4 weeks prior to study day 1, and active infection requiring oral or IV therapy. The primary endpoints are incidence of dose-limiting toxicities and adverse events, MTD, and recommended phase 2 dose. Secondary objectives will evaluate PK parameters, preliminary antitumor activity (objective response, duration of response, progression-free survival, disease control rate, duration of stable disease, overall survival), and immunogenicity of AMG 256 via incidence of anti-AMG 256 antibodies.ResultsN/AConclusionsN/AAcknowledgements• The authors thank the investigators, patients, and study staff who are contributing to this study.• The study was sponsored and funded by Amgen Inc. • Medical writing support was provided by Christopher Nosala (Amgen Inc.).Trial RegistrationNCT04362748Ethics ApprovalThe study was approved by all institutional ethics boards.ReferencesKluger HM, Tawbi HA, Ascierto ML, et al. Defining tumor resistance to PD-1 pathway blockade: recommendations from the first meeting of the SITC Immunotherapy Resistance Taskforce. J Immunother Cancer 2020;8:e000398.Thompson JA, Curti BD, Redman BG, et al. Phase I study of recombinant interleukin-21 in patients with metastatic melanoma and renal cell carcinoma. J Clin Oncol 2008;26:2034–2039.Lewis KE, Selby MJ, Masters G, et al. Interleukin-21 combined with PD-1 or CTLA-4 blockade enhances antitumor immunity in mouse tumor models. Oncoimmunology. 2017;7:e1377873.Shen S, Sckisel G, Sahoo A, et al. Engineered IL-21 cytokine muteins fused to anti-PD-1 antibodies can improve CD8+ T cell function and anti-tumor immunity. Front Immunol 2020;11:832.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tiecheng Wang ◽  
Jiakang Jin ◽  
Chao Qian ◽  
Jianan Lou ◽  
Jinti Lin ◽  
...  

AbstractAs the essential sexual hormone, estrogen and its receptor has been proved to participate in the regulation of autoimmunity diseases and anti-tumor immunity. The adjustment of tumor immunity is related to the interaction between cancer cells, immune cells and tumor microenvironment, all of which is considered as the potential target in estrogen-induced immune system regulation. However, the specific mechanism of estrogen-induced immunity is poorly understood. Typically, estrogen causes the nuclear localization of estrogen/estrogen receptor complex and alternates the transcription pattern of target genes, leading to the reprogramming of tumor cells and differentiation of immune cells. However, the estrogen-induced non-canonical signal pathway activation is also crucial to the rapid function of estrogen, such as NF-κB, MAPK-ERK, and β-catenin pathway activation, which has not been totally illuminated. So, the investigation of estrogen modulatory mechanisms in these two manners is vital for the tumor immunity and can provide the potential for endocrine hormone targeted cancer immunotherapy. Here, this review summarized the estrogen-induced canonical and non-canonical signal transduction pathway and aimed to focus on the relationship among estrogen and cancer immunity as well as immune-related tumor microenvironment regulation. Results from these preclinical researches elucidated that the estrogen-target therapy has the application prospect of cancer immunotherapy, which requires the further translational research of these treatment strategies.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A737-A737
Author(s):  
Loise Francisco-Anderson ◽  
Loise Francisco-Anderson ◽  
Mary Abdou ◽  
Michael Goldberg ◽  
Erin Troy ◽  
...  

BackgroundThe small intestinal axis (SINTAX) is a network of anatomic and functional connections between the small intestine and the rest of the body. It acts as an immunosurveillance system, integrating signals from the environment that affect physiological processes throughout the body. The impact of events in the gut in the control of tumor immunity is beginning to be appreciated. We have previously shown that an orally delivered single strain of commensal bacteria induces anti-tumor immunity preclinically via pattern recognition receptor-mediated activation of innate and adaptive immunity. Some bacteria produce extracellular vesicles (EVs) that share molecular content with the parent bacterium in a particle that is roughly 1/1000th the volume in a non-replicating form. We report here an orally-delivered and gut-restricted bacterial EV which potently attenuates tumor growth to a greater extent than whole bacteria or checkpoint inhibition.MethodsEDP1908 is a preparation of extracellular vesicles produced by a gram-stain negative strain of bacterium of the Oscillospiraceae family isolated from a human donor. EDP1908 was selected for its immunostimulatory profile in a screen of EVs from a range of distinct microbial strains. Its mechanism of action was determined by ex vivo analysis of the tumor microenvironment (TME) and by in vitro functional studies with murine and human cells.ResultsOral treatment of tumor-bearing mice with EDP1908 shows superior control of tumor growth compared to checkpoint inhibition (anti-PD-1) or an intact microbe. EDP1908 significantly increased the percentage of IFNγ and TNF producing CD8+ CTLs, NK cells, NKT cells and CD4+ cells in the tumor microenvironment (TME). EDP1908 also increased tumor-infiltrating dendritic cells (DC1 and DC2). Analysis of cytokines in the TME showed significant increases in IP-10 and IFNg production in mice treated with EDP1908, creating an environment conducive to the recruitment and activation of anti-tumor lymphocytes.ConclusionsThis is the first report of striking anti-tumor effects of an orally delivered microbial extracellular vesicle. These data point to oral EVs as a new class of immunotherapeutic drugs. They are particularly effective at harnessing the biology of the small intestinal axis, acting locally on host cells in the gut to control distal immune responses within the TME. EDP1908 is in preclinical development for the treatment of cancer.Ethics ApprovalPreclinical murine studies were conducted under the approval of the Avastus Preclinical Services’ Ethics Board. Human in vitro samples were attained by approval of the IntegReview Ethics Board; informed consent was obtained from all subjects.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A275-A275
Author(s):  
Rebecca Ward ◽  
Elena Paltrinieri ◽  
Marilyn Marques ◽  
Priyadarshini Iyer ◽  
Sylvia Dietrich ◽  
...  

BackgroundT-cell immunoreceptor with Ig and ITIM domains (TIGIT) is an important negative regulator of the immune response to cancer that contributes to resistance/relapse to anti-PD-1 therapy.1 In clinical trials, anti-human (h) TIGIT antibodies have shown promising activity in combination with anti-PD-1/PD-L1 antibodies for the treatment of various solid tumors.2 However, the optimal format for anti-TIGIT antibodies remains controversial. Here we describe a novel Fcγ receptor (FcγR)-dependent mechanism of action that is critical for enhancing T and NK cell anti-tumor immunity, and, further informs on the optimal design of anti-TIGIT antibodies.MethodsWe investigated a panel of Fc-silent, Fc-competent, and Fc-engineered anti-mouse (m) TIGIT antibody variants in syngeneic murine CT26 tumor-bearing or B16F10 pseudo-metastases models. To further elucidate the relative contribution of T and NK cells in controlling tumor growth, we assessed the activity of Fc-engineered anti-TIGIT antibodies in NK cell-depleted or T cell-deficient (Nu-Foxn1nu) CT26 tumor-bearing mice. Immune-related pharmacodynamic changes in the tumor microenvironment were assessed by flow cytometry. We further validated these findings in primary human T and NK cell activation assays using Fc-engineered anti-human TIGIT antibodies.ResultsThe Fc-engineered anti-mTIGIT antibody, which demonstrates enhanced binding to mouse FcγRIV, was the only variant to deliver single agent anti-tumor activity. The Fc-enhanced variant outperformed the Fc-competent variant while the Fc-inert variant had no anti-tumor activity. Tumor control by anti-mTIGIT antibodies was not dependent on Treg depletion, but rather on increased frequency of CD8+ T cells and activated NK cells (Ki67, IFNγ, CD107a and TRAIL) in the tumor microenvironment. Concordant with observations in the mouse, Fc-engineered anti-hTIGIT antibodies with improved binding to FcγRIIIA demonstrate superior T and NK cell activation in PBMC-based assays compared to a standard hIgG1 variant. Notably, superior activity of the Fc-engineered anti-hTIGIT antibody was observed from PBMC donors that express either high or low affinity FcγRIIIA. Blockade of FcγRIIIA or depletion of CD14+ and CD56+ cells reduced the functional activity of the Fc-enhanced anti-TIGIT antibody, confirming the requirement for FcγR co-engagement to maximize T cell responses.ConclusionsOur data demonstrate the importance of FcγR co-engagement by anti-TIGIT antibodies to promote immune activation and tumor control. First generation anti-TIGIT antibodies are not optimally designed to co-engage all FcγRIIIA variants. However, Fc-enhanced anti-TIGIT antibodies unlock a novel FcγR-dependent mechanism of action to enhance T and NK cell-dependent anti-tumor immunity and further improve therapeutic outcomes.ReferencesJohnston RJ, et al., The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell 2014; 26:923–37.Rodriguez-Abreu D, et al., Primary analysis of a randomized, double-blind, phase II study of the anti-TIGIT antibody tiragolumab (tira) plus atezolizumab (atezo) versus placebo plus atezo as first-line (1L) treatment in patients with PD-L1-selected NSCLC (CITYSCAPE). Journal of Clinical Oncology 2020; 38:15_suppl, 9503–9503.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A372-A373
Author(s):  
Ira Winer ◽  
Lucy Gilbert ◽  
Ulka Vaishampayan ◽  
Seth Rosen ◽  
Christopher Hoimes ◽  
...  

BackgroundALKS 4230 is a novel engineered cytokine that selectively targets the intermediate-affinity interleukin-2 receptor complex to activate CD8+ T cells and natural killer cells.1 The ARTISTRY-1 trial (NCT02799095) has shown encouraging efficacy and acceptable tolerability of ALKS 4230 among patients with advanced solid tumors.2 We report a detailed analysis of ovarian cancer (OC) patients who received combination therapy in ARTISTRY-1.MethodsARTISTRY-1 is an ongoing multicohort phase 1/2 trial exploring intravenous ALKS 4230 as monotherapy and combined with pembrolizumab. OC patients were enrolled into a cohort with mixed anti PD 1/L1 unapproved tumor types who had progressed on prior chemotherapy. OC patients received ALKS 4230 (3 µg/kg) on days 1–5 and pembrolizumab (200 mg) on day 1 of a 21 day cycle. Outcomes presented include antitumor activity (RECIST v1.1) and safety as of 7/24/2020. To evaluate changes in tumor microenvironment (TME), baseline and on-treatment biopsies were collected.ResultsFourteen heavily pretreated patients with OC were enrolled. Patients received a median of 5 (range, 2 11) prior regimens and all were previously treated with platinum based therapy. Among 13 evaluable patients with ≥1 assessment, 9 experienced disease control and 4 experienced disease progression; median treatment duration was approximately 7 weeks. Three patients experienced an objective response, including 1 complete response, 1 partial response (PR), and 1 unconfirmed PR; all were platinum resistant and negative for BRCA mutations. Five patients experienced tumor burden reductions (table 1). Treatment-related adverse events at the doses tested have generally been transient and manageable, with the majority being grade 1 and 2 in severity. Overall, based on preliminary data, the combination with ALKS 4230 did not demonstrate any additive toxicity to that already established with pembrolizumab alone. Additional safety and efficacy data are being collected in ongoing cohorts. In the monotherapy dose escalation portion of the study, ALKS 4230 alone increased markers of lymphocyte infiltration in 1 paired melanoma biopsy (1 of 1; on treatment at cycle 2); CD8+ T cell density and PD-L1 tumor proportion score increased 5.2- and 11 fold, respectively, supporting evidence that ALKS 4230 has immunostimulatory impact on the TME and providing rationale for combining ALKS 4230 with pembrolizumab (figure 1).Abstract 347 Table 1Summary of response observations among patients with ovarian cancerAbstract 347 Figure 1Increased markers of lymphocyte tumor infiltrationAn increase in CD3+CD8+ T cells (A, red = CD3; blue = CD8; purple = CD3+CD8+; teal = tumor marker), GranzymeB (B, red = CD8; green = granzymeB; yellow = granzymeB+CD8+; teal = tumor marker), and PD-L1 (C, red = PD-L1; blue = tumor marker) in the tumor microenvironment of a single patient was observed after the patient received monotherapy ALKS 4230ConclusionsThe combination of ALKS 4230, an investigational agent, and pembrolizumab demonstrates an acceptable safety profile and provides some evidence of tumor shrinkage and disease stabilization in some patients with heavily pretreated OC. This regimen could represent a new therapeutic option for these patients.AcknowledgementsThe authors would like to thank all of the patients who are participating in this trial and their families. The trial is sponsored by Alkermes, Inc. Medical writing and editorial support was provided by Parexel and funded by Alkermes, Inc.Trial RegistrationClinicalTrials. gov NCT02799095Ethics ApprovalThis trial was approved by Ethics and Institutional Review Boards (IRBs) at all trial sites; IRB reference numbers 16–229 (Dana-Farber Cancer Institute), MOD00003422/PH285316 (Roswell Park Comprehensive Cancer Center), 20160175 (Western IRB), i15-01394_MOD23 (New York University School of Medicine), TRIAL20190090 (Cleveland Clinic), and 0000097 (ADVARRA).ReferencesLopes JE, Fisher JL, Flick HL, Wang C, Sun L, Ernstoff MS, et al. ALKS 4230: a novel engineered IL-2 fusion protein with an improved cellular selectivity profile for cancer immunotherapy. J Immunother Cancer 2020;8:e000673. doi: 10.1136/jitc-2020-000673.Vaishampayan UN, Muzaffar J, Velcheti V, Winer I, Hoimes CJ, Rosen SD, et al. ALKS 4230 monotherapy and in combination with pembrolizumab (pembro) in patients (pts) with refractory solid tumors (ARTISTRY-1). Oral presentation at: European Society for Medical Oncology Annual Meeting; September 2020; virtual.


Author(s):  
Jiansheng Liu ◽  
Xueqin Qing ◽  
Qin Zhang ◽  
Ningyue Yu ◽  
Mengbin Ding ◽  
...  

Photodynamic therapy (PDT) has provided a promising approach for treatment of solid tumors, while the therapeutic efficacy is often limited due to hypoxic tumor microenvironment, resulting in tumor metastasis. We...


Sign in / Sign up

Export Citation Format

Share Document