Analysis on Optimization of Mirrors to Reduce High-Speed Wind Noise

Author(s):  
Lei Miao ◽  
Xi Wang ◽  
Lei Zhu ◽  
Jiu Da Guo
Keyword(s):  
Author(s):  
Ningning Liu ◽  
Yuedong Sun ◽  
Yansong Wang ◽  
Pei Sun ◽  
Wenwu Li ◽  
...  

Owing to the continuous development of the automobile industry, increasingly stringent performance requirements for noise, vibration, and harshness of automobiles are being presented. Interior noise control in high-speed vehicles has not been adequately addressed, owing to the complex mechanism of noise generation. As simulations performed previously focused on vehicle wind noise and tyre noise cannot adequately predict the effect on passenger ear-side noise, these issues are investigated in this study. Their effects on passengers are investigated using transfer path analysis. An anti-noise operational transfer path analysis is proposed to study noise generated in high-speed vehicles. The established anti-noise operational transfer path analysis model can eliminate crosstalks between noise source signals of different transmission paths. The model is validated by comparing the measured and calculated values of the anti-noise operational transfer path analysis model. The coherence of the input noise signal and the ear-side noise signal of the passenger is assessed using coherence analysis. By calculating and categorising the contributions of different noise sources in different locations and types, the main noise sources affecting passenger comfort are determined. The result indicates that the main noise sources affecting the passenger’s ear-side noise change from engine noise to left-A wind noise and tyre radiation noise with increasing vehicle speed, in which the proportion also increase. The proposed anti-noise operational transfer path analysis is suitable for the interior-noise analysis of high-speed vehicles, and this study may serve as a reference for future studies regarding active and passive noise control in high-speed vehicles.


Author(s):  
Yasuhiko Okutsu ◽  
Naoki Hamamoto ◽  
Robert Powell ◽  
Long Wu

To control high frequency wind noise upper than 1 kHz is important to ensure the comfort for a driver and passengers when vehicles cruise at high speed. Therefore the prediction method for high frequency wind noise inside a cabin has been required for development of a vehicle. This paper describes about the prediction method for high frequency wind noise from numerical simulation results. In this study, wind noise caused by airflow around a front pillar is predicted. We have predicted wind noise by visualizing noise sources and pressure fluctuation on vehicle surfaces in recent years. Although an inferior-to-superior relationship can be predicted from these results, it was difficult to estimate quantitative interior noise level. In this research, the SEA code is examined to predict such noise level. The SEA code has confirmed showing a qualitative and almost quantitative consistency of measured and calculated SPL at the head area of a front passenger seat.


2012 ◽  
Vol 249-250 ◽  
pp. 307-313 ◽  
Author(s):  
Xiao Yan Yang ◽  
You Gang Xiao ◽  
Yu Shi

Statistical energy analysis(SEA) method has many advantages in analysis of high frequency, high modal density and complex dynamic systems. Dividing high-speed train cab into a series of sub-systems, the SEA model of high-speed train cab was established. The factors affecting the cab noise, such as modal density, damping loss factors, coupling loss factors, were gotten by theoretical analysis combined with experiments. Using large eddy simulation method, the fluctuation pressures from train head surface were calculated. Using fluctuation pressure as excitation source, wind noise spectra and power flow of sub-systems in cab were obtained, which provided the basis for the control of high-speed train cab noise.


Author(s):  
E.D. Wolf

Most microelectronics devices and circuits operate faster, consume less power, execute more functions and cost less per circuit function when the feature-sizes internal to the devices and circuits are made smaller. This is part of the stimulus for the Very High-Speed Integrated Circuits (VHSIC) program. There is also a need for smaller, more sensitive sensors in a wide range of disciplines that includes electrochemistry, neurophysiology and ultra-high pressure solid state research. There is often fundamental new science (and sometimes new technology) to be revealed (and used) when a basic parameter such as size is extended to new dimensions, as is evident at the two extremes of smallness and largeness, high energy particle physics and cosmology, respectively. However, there is also a very important intermediate domain of size that spans from the diameter of a small cluster of atoms up to near one micrometer which may also have just as profound effects on society as “big” physics.


Author(s):  
N. Yoshimura ◽  
K. Shirota ◽  
T. Etoh

One of the most important requirements for a high-performance EM, especially an analytical EM using a fine beam probe, is to prevent specimen contamination by providing a clean high vacuum in the vicinity of the specimen. However, in almost all commercial EMs, the pressure in the vicinity of the specimen under observation is usually more than ten times higher than the pressure measured at the punping line. The EM column inevitably requires the use of greased Viton O-rings for fine movement, and specimens and films need to be exchanged frequently and several attachments may also be exchanged. For these reasons, a high speed pumping system, as well as a clean vacuum system, is now required. A newly developed electron microscope, the JEM-100CX features clean high vacuum in the vicinity of the specimen, realized by the use of a CASCADE type diffusion pump system which has been essentially improved over its predeces- sorD employed on the JEM-100C.


Author(s):  
William Krakow

In the past few years on-line digital television frame store devices coupled to computers have been employed to attempt to measure the microscope parameters of defocus and astigmatism. The ultimate goal of such tasks is to fully adjust the operating parameters of the microscope and obtain an optimum image for viewing in terms of its information content. The initial approach to this problem, for high resolution TEM imaging, was to obtain the power spectrum from the Fourier transform of an image, find the contrast transfer function oscillation maxima, and subsequently correct the image. This technique requires a fast computer, a direct memory access device and even an array processor to accomplish these tasks on limited size arrays in a few seconds per image. It is not clear that the power spectrum could be used for more than defocus correction since the correction of astigmatism is a formidable problem of pattern recognition.


Author(s):  
C. O. Jung ◽  
S. J. Krause ◽  
S.R. Wilson

Silicon-on-insulator (SOI) structures have excellent potential for future use in radiation hardened and high speed integrated circuits. For device fabrication in SOI material a high quality superficial Si layer above a buried oxide layer is required. Recently, Celler et al. reported that post-implantation annealing of oxygen implanted SOI at very high temperatures would eliminate virtually all defects and precipiates in the superficial Si layer. In this work we are reporting on the effect of three different post implantation annealing cycles on the structure of oxygen implanted SOI samples which were implanted under the same conditions.


Author(s):  
Z. Liliental-Weber ◽  
C. Nelson ◽  
R. Ludeke ◽  
R. Gronsky ◽  
J. Washburn

The properties of metal/semiconductor interfaces have received considerable attention over the past few years, and the Al/GaAs system is of special interest because of its potential use in high-speed logic integrated optics, and microwave applications. For such materials a detailed knowledge of the geometric and electronic structure of the interface is fundamental to an understanding of the electrical properties of the contact. It is well known that the properties of Schottky contacts are established within a few atomic layers of the deposited metal. Therefore surface contamination can play a significant role. A method for fabricating contamination-free interfaces is absolutely necessary for reproducible properties, and molecularbeam epitaxy (MBE) offers such advantages for in-situ metal deposition under UHV conditions


Author(s):  
Brian Cross

A relatively new entry, in the field of microscopy, is the Scanning X-Ray Fluorescence Microscope (SXRFM). Using this type of instrument (e.g. Kevex Omicron X-ray Microprobe), one can obtain multiple elemental x-ray images, from the analysis of materials which show heterogeneity. The SXRFM obtains images by collimating an x-ray beam (e.g. 100 μm diameter), and then scanning the sample with a high-speed x-y stage. To speed up the image acquisition, data is acquired "on-the-fly" by slew-scanning the stage along the x-axis, like a TV or SEM scan. To reduce the overhead from "fly-back," the images can be acquired by bi-directional scanning of the x-axis. This results in very little overhead with the re-positioning of the sample stage. The image acquisition rate is dominated by the x-ray acquisition rate. Therefore, the total x-ray image acquisition rate, using the SXRFM, is very comparable to an SEM. Although the x-ray spatial resolution of the SXRFM is worse than an SEM (say 100 vs. 2 μm), there are several other advantages.


Sign in / Sign up

Export Citation Format

Share Document