Republic scientific and technical conference on ?mechanical properties of polymeric structural materials used in different environments?

1974 ◽  
Vol 8 (6) ◽  
pp. 761-762
Author(s):  
A. I. Soshko
2014 ◽  
Vol 9 (6) ◽  
pp. 1015-1020 ◽  
Author(s):  
Luis Lavado ◽  
◽  
Jenny Taira ◽  
Jorge Gallardo

Masonry is one of the most common structural materials used to build houses in the city of Lima, Peru. The structural features of this material and its components vary widely, however, due to the manufacturing process, which uses bricks and aggregates and different levels of labor. This paper presents experimental results realized using bricks, prism and wallettes to determine the mechanical properties of masonry.


2005 ◽  
Vol 475-479 ◽  
pp. 627-630 ◽  
Author(s):  
Yue Feng Gu ◽  
Y. Ro ◽  
Hiroshi Harada

The mechanical properties of chromium (Cr) and Cr-base alloys are reviewed, with particular emphasis on the ductility at ambient temperature and the strengths at high temperature. Analysis of rather scattered data and our recent results suggest that Cr-base alloy can be ductilized greatly at ambient temperature and is quite capable of being strengthened to high levels at high temperature. New designs on composition would give high possibility to Cr-base alloys as structural materials used in high-temperature applications.


Author(s):  
Nicholas Randall ◽  
Rahul Premachandran Nair

Abstract With the growing complexity of integrated circuits (IC) comes the issue of quality control during the manufacturing process. In order to avoid late realization of design flaws which could be very expensive, the characterization of the mechanical properties of the IC components needs to be carried out in a more efficient and standardized manner. The effects of changes in the manufacturing process and materials used on the functioning and reliability of the final device also need to be addressed. Initial work on accurately determining several key mechanical properties of bonding pads, solder bumps and coatings using a combination of different methods and equipment has been summarized.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 519
Author(s):  
Vitalii Bezgin ◽  
Agata Dudek ◽  
Adam Gnatowski

This paper proposes and presents the chemical modification of linear hydroxyethers (LHE) with different molecular weights (380, 640, and 1830 g/mol) with the addition of three types of rubbers (polysulfide rubber (PSR), polychloroprene rubber (PCR), and styrene-butadiene rubber (SBR)). The main purpose of choosing this type of modification and the materials used was the possibility to use it in industrial settings. The modification process was conducted for a very wide range of modifier additions (rubber) per 100 g LHE. The materials obtained in the study were subjected to strength tests in order to determine the effect of the modification on functional properties. Mechanical properties of the modified materials were improved after the application of the modifier (rubber) to polyhydroxyether (up to certain modifier content). The most favorable changes in the tested materials were registered in the modification of LHE-1830 with PSR. In the case of LHE-380 and LHE-640 modified in cyclohexanol (CH) and chloroform (CF) solutions, an increase in the values of the tested properties was also obtained, but to a lesser extent than for LHE-1830. The largest changes were registered for LHE-1830 with PSR in CH solution: from 12.1 to 15.3 MPa for compressive strength tests, from 0.8 to 1.5 MPa for tensile testing, from 0.8 to 14.7 MPa for shear strength, and from 1% to 6.5% for the maximum elongation. The analysis of the available literature showed that the modification proposed by the authors has not yet been presented in any previous scientific paper.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Erfan Dashtimoghadam ◽  
Farahnaz Fahimipour ◽  
Andrew N. Keith ◽  
Foad Vashahi ◽  
Pavel Popryadukhin ◽  
...  

AbstractCurrent materials used in biomedical devices do not match tissue’s mechanical properties and leach various chemicals into the body. These deficiencies pose significant health risks that are further exacerbated by invasive implantation procedures. Herein, we leverage the brush-like polymer architecture to design and administer minimally invasive injectable elastomers that cure in vivo into leachable-free implants with mechanical properties matching the surrounding tissue. This strategy allows tuning curing time from minutes to hours, which empowers a broad range of biomedical applications from rapid wound sealing to time-intensive reconstructive surgery. These injectable elastomers support in vitro cell proliferation, while also demonstrating in vivo implant integrity with a mild inflammatory response and minimal fibrotic encapsulation.


2016 ◽  
Vol 17 ◽  
pp. 14-30 ◽  
Author(s):  
Okechukwu P. Nwachukwu ◽  
Alexander V. Gridasov ◽  
Ekaterina A. Gridasova

This review looks into the state of gigacycle fatigue behavior of some structural materials used in engineering works. Particular attention is given to the use of ultrasonic fatigue testing machine (USF-2000) due to its important role in conducting gigacycle fatigue tests. Gigacycle fatigue behavior of most materials used for very long life engineering applications is reviewed.Gigacycle fatigue behavior of magnesium alloys, aluminum alloys, titanium alloys, spheroid graphite cast iron, steels and nickel alloys are reviewed together with the examination of the most common material defects that initiate gigacycle fatigue failures in these materials. In addition, the stage-by-stage fatigue crack developments in the gigacycle regime are reviewed. This review is concluded by suggesting the directions for future works in gigacycle fatigue.


2021 ◽  
Vol 875 ◽  
pp. 373-378
Author(s):  
Ali Haider ◽  
Omar Farooq Azam ◽  
Muhammad Talha ◽  
Saleem Akhtar

Restorative material is a class of dental materials used for direct filling and fabrication of indirect restoration. NiCr alloy is a restorative material frequently used for dental prostheses due to its properties and economic reasons. In present work beryllium free NiCrMo alloy was developed and studied for dental restoration application. The alloy have unique characteristics of resistance to oxidation and biocompatibility; the requisites for dental prostheses. NiCrMo alloy is found to possess mechanical strength and fabrication properties suitable for dental repairs. In this study the developed alloy was tested for its mechanical properties, biocompatibility and corrosion resistance. An in-vitro biocompatibility study was carried out. No signs of toxicity and no signs of cell growth inhibition, in presence of NiCrMo alloy specimen, were observed. Mechanical properties and corrosion resistance are found in the range that is suitable for dental prostheses and easy fabrication.


1992 ◽  
Author(s):  
John M. Cavanaugh ◽  
Yonghua J. Zhu ◽  
Yue Huang ◽  
Albert I. King

Sign in / Sign up

Export Citation Format

Share Document