Anti-PD1/PDL1 IgG subclass distribution in ten cancer types and anti-PD1 IgG4 as biomarker for the long time survival in NSCLC with anti-PD1 therapy

Author(s):  
Qiaoyun Tan ◽  
Liyuan Dai ◽  
Yanrong Wang ◽  
Shuxia Liu ◽  
Te Liang ◽  
...  
Keyword(s):  
2020 ◽  
Vol 39 (4) ◽  
pp. 1091-1105
Author(s):  
Kinga Nyíri ◽  
Gergely Koppány ◽  
Beáta G. Vértessy

AbstractAs a member of small GTPase family, KRAS protein is a key physiological modulator of various cellular activities including proliferation. However, mutations of KRAS present in numerous cancer types, most frequently in pancreatic (> 60%), colorectal (> 40%), and lung cancers, drive oncogenic processes through overactivation of proliferation. The G12C mutation of KRAS protein is especially abundant in the case of these types of malignancies. Despite its key importance in human disease, KRAS was assumed to be non-druggable for a long time since the protein seemingly lacks potential drug-binding pockets except the nucleotide-binding site, which is difficult to be targeted due to the high affinity of KRAS for both GDP and GTP. Recently, a new approach broke the ice and provided evidence that upon covalent targeting of the G12C mutant KRAS, a highly dynamic pocket was revealed. This novel targeting is especially important since it serves with an inherent solution for drug selectivity. Based on these results, various structure-based drug design projects have been launched to develop selective KRAS mutant inhibitors. In addition to the covalent modification strategy mostly applicable for G12C mutation, different innovative solutions have been suggested for the other frequently occurring oncogenic G12 mutants. Here we summarize the latest advances of this field, provide perspectives for novel approaches, and highlight the special properties of KRAS, which might issue some new challenges.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7611
Author(s):  
Eslam B. Elkaeed ◽  
Hayam A. Abd El Salam ◽  
Ahmed Sabt ◽  
Ghada H. Al-Ansary ◽  
Wagdy M. Eldehna

Among all cancer types, breast cancer (BC) still stands as one of the most serious diseases responsible for a large number of cancer-associated deaths among women worldwide, and diagnosed cases are increasing year by year worldwide. For a very long time, hormonal therapy, surgery, chemotherapy, and radiotherapy were used for breast cancer treatment. However, these treatment approaches are becoming progressively futile because of multidrug resistance and serious side effects. Consequently, there is a pressing demand to develop more efficient and safer agents that can fight breast cancer belligerence and inhibit cancer cell proliferation, invasion and metastasis. Currently, there is an avalanche of newly designed and synthesized molecular entities targeting multiple types of breast cancer. This review highlights several important synthesized compounds with promising anti-BC activity that are categorized according to their chemical structures.


Author(s):  
Arnaud Martino Capuzzo

Lynch syndrome (LS) is an autosomal dominant genetic condition caused by mutations in the DNA mismatch repair (MMR) genes in the germline. Colorectal cancer and/or LS-associated cancer are more likely in people who carry pathogenic mutations in these genes. Cancers of the endometrium, small intestine, stomach, pancreas, and biliary tract, ovarian, brain, upper urinary tract, and skin are among the cancer types linked to LS. The criteria for a clinical diagnosis of LS, as well as the processes for genetic testing to identify carriers of pathogenetic mutations in MMR genes, have been known for a long time. The precise description of the pathogenicity associated with MMR genetic variants is critical in the mutation detection analysis, especially in order to enroll mutation carriers in endoscopic surveillance programs that are more suited to them. As a result, this may aid in the improvement of LS-related cancer prevention efforts. In this review, we discuss recent advances in the molecular genetics of LS.


Author(s):  
Arnaud Martino Capuzzo

Lynch syndrome (LS) is an autosomal dominant genetic condition caused by mutations in the DNA mismatch repair (MMR) genes in the germline. Colorectal cancer and/or LS-associated cancer are more likely in people who carry pathogenic mutations in these genes. Cancers of the endometrium, small intestine, stomach, pancreas, and biliary tract, ovarian, brain, upper urinary tract, and skin are among the cancer types linked to LS. The criteria for a clinical diagnosis of LS, as well as the processes for genetic testing to identify carriers of pathogenetic mutations in MMR genes, have been known for a long time. The precise description of the pathogenicity associated with MMR genetic variants is critical in the mutation detection analysis, especially in order to enroll mutation carriers in endoscopic surveillance programs that are more suited to them. As a result, this may aid in the improvement of LS-related cancer prevention efforts. In this review, we discuss recent advances in the molecular genetics of LS.


Author(s):  
M. Iwatsuki ◽  
Y. Kokubo ◽  
Y. Harada ◽  
J. Lehman

In recent years, the electron microscope has been significantly improved in resolution and we can obtain routinely atomic-level high resolution images without any special skill. With this improvement, the structure analysis of organic materials has become one of the interesting targets in the biological and polymer crystal fields.Up to now, X-ray structure analysis has been mainly used for such materials. With this method, however, great effort and a long time are required for specimen preparation because of the need for larger crystals. This method can analyze average crystal structure but is insufficient for interpreting it on the atomic or molecular level. The electron microscopic method for organic materials has not only the advantage of specimen preparation but also the capability of providing various information from extremely small specimen regions, using strong interactions between electrons and the substance. On the other hand, however, this strong interaction has a big disadvantage in high radiation damage.


Author(s):  
YIQUN MA

For a long time, the development of dynamical theory for HEER has been stagnated for several reasons. Although the Bloch wave method is powerful for the understanding of physical insights of electron diffraction, particularly electron transmission diffraction, it is not readily available for the simulation of various surface imperfection in electron reflection diffraction since it is basically a method for bulk materials and perfect surface. When the multislice method due to Cowley & Moodie is used for electron reflection, the “edge effects” stand firmly in the way of reaching a stationary solution for HEER. The multislice method due to Maksym & Beeby is valid only for an 2-D periodic surface.Now, a method for solving stationary solution of HEER for an arbitrary surface is available, which is called the Edge Patching method in Multislice-Only mode (the EPMO method). The analytical basis for this method can be attributed to two important characters of HEER: 1) 2-D dependence of the wave fields and 2) the Picard iteractionlike character of multislice calculation due to Cowley and Moodie in the Bragg case.


Author(s):  
Yimei Zhu ◽  
J. Tafto

The electron holes confined to the CuO2-plane are the charge carriers in high-temperature superconductors, and thus, the distribution of charge plays a key role in determining their superconducting properties. While it has been known for a long time that in principle, electron diffraction at low angles is very sensitive to charge transfer, we, for the first time, show that under a proper TEM imaging condition, it is possible to directly image charge in crystals with a large unit cell. We apply this new way of studying charge distribution to the technologically important Bi2Sr2Ca1Cu2O8+δ superconductors.Charged particles interact with the electrostatic potential, and thus, for small scattering angles, the incident particle sees a nuclei that is screened by the electron cloud. Hence, the scattering amplitude mainly is determined by the net charge of the ion. Comparing with the high Z neutral Bi atom, we note that the scattering amplitude of the hole or an electron is larger at small scattering angles. This is in stark contrast to the displacements which contribute negligibly to the electron diffraction pattern at small angles because of the short g-vectors.


Author(s):  
M. G. Burke ◽  
M. N. Gungor ◽  
M. A. Burke

Intermetallic matrix composites are candidates for ultrahigh temperature service when light weight and high temperature strength and stiffness are required. Recent efforts to produce intermetallic matrix composites have focused on the titanium aluminide (TiAl) system with various ceramic reinforcements. In order to optimize the composition and processing of these composites it is necessary to evaluate the range of structures that can be produced in these materials and to identify the characteristics of the optimum structures. Normally, TiAl materials are difficult to process and, thus, examination of a suitable range of structures would not be feasible. However, plasma processing offers a novel method for producing composites from difficult to process component materials. By melting one or more of the component materials in a plasma and controlling deposition onto a cooled substrate, a range of structures can be produced and the method is highly suited to examining experimental composite systems. Moreover, because plasma processing involves rapid melting and very rapid cooling can be induced in the deposited composite, it is expected that processing method can avoid some of the problems, such as interfacial degradation, that are associated with the relatively long time, high temperature exposures that are induced by conventional processing methods.


Author(s):  
Shailesh R. Sheth ◽  
Jayesh R. Bellare

Specimen support and astigmatism correction in Electron Microscopy are at least two areas in which lacey polymer films find extensive applications. Although their preparation has been studied for a very long time, present techniques still suffer from incomplete release of the film from its substrate and presence of a large number of pseudo holes in the film. Our method ensures complete removal of the entire lacey film from the substrate and fewer pseudo holes by pre-treating the substrate with Gum Arabic, which acts as a film release agent.The method is based on the classical condensation technique for preparing lacey films which is essentially deposition of minute water or ice droplets on the substrate and laying the polymer film over it, so that micro holes are formed corresponding to the droplets. A microscope glass slide (the substrate) is immersed in 2.0% (w/v) aq. CTAB (cetyl trimethyl ammonium bromide)-0.22% (w/v) aq.


Author(s):  
K.-H. Herrmann ◽  
W. D. Rau ◽  
R. Sikeler

Quantitative recording of electron patterns and their rapid conversion into digital information is an outstanding goal which the photoplate fails to solve satisfactorily. For a long time, LLL-TV cameras have been used for EM adjustment but due to their inferior pixel number they were never a real alternative to the photoplate. This situation has changed with the availability of scientific grade slow-scan charged coupled devices (CCD) with pixel numbers exceeding 106, photometric accuracy and, by Peltier cooling, both excellent storage and noise figures previously inaccessible in image detection technology. Again the electron image is converted into a photon image fed to the CCD by some light optical transfer link. Subsequently, some technical solutions are discussed using the detection quantum efficiency (DQE), resolution, pixel number and exposure range as figures of merit.A key quantity is the number of electron-hole pairs released in the CCD sensor by a single primary electron (PE) which can be estimated from the energy deposit ΔE in the scintillator,


Sign in / Sign up

Export Citation Format

Share Document