Effect of the design parameters on mass transfer and energy consumption inside a lithium electrolysis cell

2018 ◽  
Vol 48 (6) ◽  
pp. 725-737 ◽  
Author(s):  
Elaheh Oliaii ◽  
Martin Désilets ◽  
Gaétan Lantagne
2011 ◽  
Vol 228-229 ◽  
pp. 1035-1038
Author(s):  
Zhi Yong Hao ◽  
Jun Mao

Using finite element analysis software ANSYS/ LS-DYNA, establishing the plow cutting coal seam 3D simulation model, simulating plow bit cutting coal seam dynamic process. under study, obtaining plow bit the cutting resistance, plow speed of time process curve, analyzing the influence on cutting energy consumption of the different cutting depth, separation distance and width, reaching the rule of cutting energy consumption changing with plow bits’ structure parameter and design parameters, in order to reduce the energy consumption and resistance, cutting depth and plow bits spacing ought to be selected by the real coal seam face conditions.


2020 ◽  
Vol 11 (3) ◽  
pp. 11054-11065

The article is devoted to the study of the forms of moisture bond in mature cheeses. The kinetics of mass transfer processes depend on the mobility and binding energy of water with solid and dissolved substances. Therefore, the removal of bound water is accompanied by deterioration in kinetics and increased energy consumption. In this regard, information on the state of bound water in substances during dehydration is very important from a scientific point of view and from a practical one. Based on the studies carried out, the forms of moisture bond in various types of cheese were determined by strain-gauge and thermographic methods. Based on this, it has been established that the forms of moisture bond in cheeses can be determined by strain-gauge and thermographic methods.


2020 ◽  
Vol 6 (2) ◽  
pp. 81-87
Author(s):  
Zhanna Petrova ◽  
◽  
Kateryna Samoilenko ◽  
Vitaly Vishnevsky

Red beetroot is the main raw material which has a high content of betanine with antioxidant properties. An important emphasis in the processing of antioxidant raw materials by drying is to reduce energy consumption for the dehydration process, the maximum preservation of biologically active substances, and to reduce the cost of the final product. Drying is a complex and energy-intensive process. Therefore, to optimize energy consumption during drying and selection of rational modes of dehydration, it is necessary to apply the calculated analysis of heat and mass transfer on the basis of adequate mathematical models. Calculated and experimental results are compared. In general, the comparison of the results of numerical modeling of convection drying processes of the red beetroot sample with the experimental results showed their rather satisfactory qualitative agreement. The calculation model can be used to approximate the characteristics of the drying process of red beetroot, in particular the time required for drying. The obtained results of calorimetric studies allow stating that with correctly selected compositions, not only the components of native raw materials are stabilized, but also the drying process is intensified with the reduction of energy consumption to process.


Solar Energy ◽  
2005 ◽  
Author(s):  
D. Dong ◽  
M. Liu

Investigations of a desiccant dehumidifier system have been performed for humidity control application in confined spaces. A previous study revealed that the base dehumidifier system can reduce moisture condensation by 22% over a conventional exhaust ventilation system. The current study aims to develop improved design requirements for a desiccant dehumidifier. The energy consumption of an exhaust ventilation system and an improved dehumidifier system was compared. To investigate the improved desiccant dehumidification system, numerical simulations were conducted and an objective function was established. This paper presents simulated results for an existing desiccant dehumidification system and an improved system, in which improved parameters are used. Use of the improved design parameters can reduce moisture condensation by 26.6% over a base dehumidifier system and shorten the dehumidifier performance period by 14%. Energy consumption with the sole use of an exhaust system is compared with that of the improved dehumidifier system under the same conditions. The results show that energy consumption can be substantially reduced, by 63%, in the improved dehumidifier system with the same amount of moisture condensation on surfaces of the confined space.


2009 ◽  
Vol 44 (2) ◽  
pp. 183-188 ◽  
Author(s):  
Asim Yaqub ◽  
Huma Ajab ◽  
Saqib Khan ◽  
Sajjad Khan ◽  
Robina Farooq

Abstract The effects of ultrasonic frequencies on both the mass transport process and diffusion layer were investigated during electrochemical treatment. The rates of mass transfer at a stainless steel cathode were measured for copper and lead in dilute acidified copper sulphate and lead nitrate solutions at different ultrasonic frequencies. Concentrations in bulk solution were determined by atomic absorption spectrophotometer. By increasing frequencies from 40 to 100 kHz, a high value for the mass transfer coefficient and an effective thinning of the diffusion layer were observed. Higher rates of mass transfer reduced energy consumption. Use of ultrasound with electrochemical processes can provide valuable contributions to remove metallic ions from industrial wastewater without using extra chemicals. The process has efficiently reduced the cost of energy consumption and deposition time.


2018 ◽  
Vol 279 ◽  
pp. 77-84 ◽  
Author(s):  
Wen Tang Xia ◽  
Xiao Yan Xiang ◽  
Wen Qiang Yang ◽  
Jian Guo Yin

Because of distinctive properties, such as dendritic structure, high green strength, and low oxygen content, electrolytic copper powder has been widely used in aviation, aerospace, national defense industry and other domains. But at present, energy consumption of the electrolysis process in copper powder production is high, and the current efficiency is only about 90%. Therefore,the decrease in energy consumption of the electrolysis process has become the major bottlenecks in the development of the enterprises. In this paper, a new electrolysis cell with different electrolyte inlet arranged on the cell was manufactured. Then, the effect of flow pattern of electrolyte on the current efficiency, energy consumption and properties of copper powder was investigated. The experimental results showed that the electrolytic process had the higher current efficiency, lower energy consumption and smaller copper powders when the flow rate is 0.5l/min in the paralleled inlet and 1.5 l/min in the traditional inlet. Under the optimal conditions, the current efficiency, energy consumption and copper powder size were 99.10%, 712.90kw∙h/t and 47.80um respectively. This means an obvious rise in current efficiency and decrease in energy consumption compared to traditional feeding method.


Author(s):  
Benjamin J. Snyder ◽  
Joe Bussard ◽  
Jim Dolak ◽  
Tim Weiser

This project analyzed and redesigned the various components of a previously designed sisal decorticator prototype. The sisal plant is easily grown in the arid regions of Kenya and its fiber has widespread industrial and consumer applications. Competition from Brazilian and Chinese sisal growers has made it difficult for small-scale Kenyan sisal farmers to yield a profit. Decorticator machines strip the usable fiber from the sisal leaves. A strong market exists in Kenya and beyond for an affordable and capable decortication device. Based on interaction with University of Nairobi students and faculty, design parameters were assessed and adapted to create a working prototype to meet these needs. Throughout the design process, affordability, energy consumption, transportability, reliability, on-site material and assembly constraints were taken into account. The designs chosen accomplished the project requirements by minimizing cost through material selection and ease of manufacture, and provided adjustable parameters in order to facilitate decortication quality testing. A vertical feed, small diameter decorticator with steel blades transportable via a steel frame with two wheels was determined to be the optimal solution. Testing with actual sisal and variable components enabled quality to be assessed as well as ensured that the designed prototype operated correctly and safely.


2020 ◽  
Vol 20 (7) ◽  
pp. 2858-2874
Author(s):  
Mostafa Abd El-Rady Abu-Zeid ◽  
Xiaolong Lu ◽  
Shaozhe Zhang

Abstract The low flux and high energy consumption problems of the conventional three-stage air-gap membrane distillation (AG-AG-AG)MD system caused by the low temperature difference between hot and cold feed at both sides of the membrane and high boundary layer thickness were solved successfully by replacing one of the three stages of air gaps by a water gap. The novel three-stage air-gap–water-gap membrane distillation (AG-AG-WG)MD system reduced energy consumption and increased flux due to efficient internal heat recycling by virtue of a water-gap module. Heat and mass transfer in novel and conventional three-stage systems were analyzed theoretically. Under a feed temperature of 45 °C, flow rate of 20 l/h, cooling temperature of 20 °C, and concentration of 340 ppm, the (AG-AG-WG)MD promoted flux by 17.59% and 211.69%, and gained output ratio (GOR) by 60.57% and 204.33% compared with two-stage (AG-WG)MD and one-stage AGMD, respectively. This work demonstrated the important role of a water gap in changing the heat and mass transfer where convection heat transfer across the water gap is faster by 24.17 times than conduction heat transfer through the air gap. The increase in flux and GOR economized the heating energy and decreased waste heat input into the system. Additionally, the number of MD stages could increase the achieving of a high flux with operation stability.


Sign in / Sign up

Export Citation Format

Share Document