NO3 −/NH4 + ratios affect plant growth, chlorophyll content, respiration rate, and morphological structure in Malus hupehensis seedlings

2015 ◽  
Vol 26 (4) ◽  
pp. 983-991 ◽  
Author(s):  
Yu Dong ◽  
Huan-huan Zhi ◽  
Qian Zhao ◽  
Jun-feng Guan
2021 ◽  
Vol 3 (2) ◽  
pp. 37-44
Author(s):  
Selvia Dewi Pohan

Water spinach (Ipomoea reptans Poir) had been identified as a nutritious vegetable with high demand in Indonesia. Besides, this plant also has been evidenced to play an important role in environmental cleaning as phytoremediator. The study about the effect of organic fertilizers on the growth and yield of water spinach (Ipomoea reptans Poir) has been conducted in the Green House of Biology Department, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan. The study aims to investigate the most effective type of fertilizers and the dose for water spinach’s (Ipomoea reptans Poir) growth and yield. A Completely Randomized Factorial Design was designed for the experiment with two factors and three repetitions. The first factor is the type of fertilizer (chicken manure, cow manure, and compost), and the second factor is the dose of the fertilizer (1:1, 2:1, and 3:1). The parameters such as plant height, number of shoots, number of leaves, fresh weight, dry weight, leaf’s total chlorophyll content, and water content were measured to evaluate plant growth and yield. The General Linear Model used SPSS 21 programs was applied to analyze the collected data. Study results revealed that cow manure increased plant growth and yield significantly with dose 2:1 as the finest treatment, followed by dose 3:1. Cow manure also increased total chlorophyll content (8.0574c mg. L-1), with the most suitable dose was 2:1 (8.2807 mg. L-1). The plant’s water content tended to be high in chicken manure (93%), and the lower water content was in cow manure with dose 3:1 (87.5%).


2021 ◽  
Vol 12 (5) ◽  
pp. 286-294
Author(s):  
Poornata Jena ◽  
◽  
N. K. Sahoo ◽  
J. K. Mahalik ◽  
◽  
...  

A pot experiment was carried out in the net house of Department of Nematology, OUAT, Bhubaneswar, Odisha, India during June to August, 2017 on the application of oilcakes (mustard cake and neem cake) and bio-agents (Trichoderma viride, Glomus fasciculatum, Rhizobium leguminosarum) each alone and in combination for the management of root knot nematode (Meloidogyne incognita) in green gram. Result of the experiment indicated that soil application of mustard or neem cake @ 50 g m-2 with AM fungus (Glomus fasciculatum) @ 5 g m-² and seed treatment of Rhizobium @ 25 g kg-1 of green gram seed declined the root knot nematode population, number of galls plant-1, number of eggmass plant-1and root knot index with corresponding increase of plant growth parameters and chlorophyll content in green gram plant as compared to other treatments and untreated check. But integration of mustard cake @ 50 g m-2 at 2 weeks prior to sowing with AM fungus @ 5 g m-2 at 10 days before sowing and seed treatment of Rhizobium @ 25 g kg-1 green gram seed exhibited the lowest M. incognita population 200 cc soil-1 (153.33 J2), number of galls plant-1 (7.0), number of eggmass plant-1 (2.0) and root knot index (2.0) reflecting enhancement of plant growth parameters, number of pods (206.67%), number of nodules (691.17%) over untreated check. This integrated management module also recorded maximum increase in the availability of NPK content in soil and chlorophyll content as compared to other treatments.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3375 ◽  
Author(s):  
Lin Cai ◽  
Minghong Liu ◽  
Zhongwei Liu ◽  
Huikuan Yang ◽  
Xianchao Sun ◽  
...  

In this study, we documented the impact of magnesium oxide nanoparticles (MgONPs) on the various morpho-physiological changes by root irrigation in tobacco plants in the matrix media, as well as the uptake and accumulation of the NPs over a range of concentrations (50–250 μg/mL). Our results showed that the seed germination rate was not affected following exposure to MgONPs for 5 days. Enhanced plant growth together with increased peroxidase activity (39.63 U mg−1 protein in the 250 μg/mL MgONPs treatment, 36.63 U mg−1 protein in the control), superoxide dismutase activity (30.15 U mg−1 protein compared to 26.95 U mg−1 protein in the control), and chlorophyll content (the chlorophyll a and b contents in 0 and 250 μg/mL of MgONPs were 0.21, 0.12 μg/g to 1.21, 0.67 μg/g, respectively) were observed after 30 days of MgONP treatment. However, the malondialdehyde, protein, and relative water contents did not differ significantly, indicating that the NPs in the test concentrations had no phytotoxicity and even promoted plant growth. Scanning electron microscopy and paraffin section observations indicated that the MgONPs did not affect the plant tissue structures and cells. In addition, an elevated Mg content was detected in the plant tissues exposed to MgONPs, suggesting that the Mg was taken up by the tobacco roots and translocated to the shoots and leaves, which were probably the most important tools to cause an increase in the chlorophyll content and stimulate growth. In particular, compared with the controls, a substantially higher Mg content was observed in the leaves (12.93 mg/g in the MgONPs treatment, 9.30 mg/g in the control) exposed to 250 μg/mL MgONPs, especially in the lower and middle leaves. This result confirmed that the contents of plant Mg-element in the old leaves were increased by MgONPs. In summary, this study investigated increased Mg uptake and growth stimulation, as well as the induction of various positive morpho-physiological changes to tobacco plants when exposed to MgONPs. Results elucidate the promotional impact of the NPs on plant health and their implications for agricultural safety and security.


Horticulturae ◽  
2018 ◽  
Vol 5 (1) ◽  
pp. 1 ◽  
Author(s):  
Penta Pristijono ◽  
John Golding ◽  
Michael Bowyer

Mature green ‘Kensington Pride’ mangoes (Mangifera indica L.) were treated with a short-term UV-C light at four different intensities (0, 4.0, 8.3 and 11.7 kJ m−2). After treatment, mangoes were stored for 12 d in air (<0.005 μL L−1 ethylene) or 0.1 μL L−1 ethylene at 20 °C and 100% relative humidity (RH). Weight loss, peel colour, firmness, ethylene production, respiration rate, total soluble solids (TSS), titratable acidity (TA), total chlorophyll content, total phenolic content (TPC) and total antioxidant activity were assessed at 3-d intervals. The results showed that UV-C treatment delayed skin degreening, reduced endogenous ethylene production, suppressed respiration rate and lowered chlorophyll content compared to untreated control fruit. Fruit treated with UV-C had significantly higher TPC and total antioxidant activity at the end of the storage period than untreated fruits for both storage atmospheres. In addition, UV-C treated fruits remained significantly firmer than untreated fruits. UV-C treatment significantly affected TSS and TA levels in different ways. Storage of fruits in 0.1 μL L−1 ethylene significantly affected fruit firmness, respiration rate and ethylene production, while other fruit quality parameters were similar to fruit stored in air. These results indicated that UV-C irradiation could be used as an effective and rapid method to extend the postharvest life of mature green mangoes without adversely affecting certain quality attributes in the presence of low-level ethylene during storage.


2017 ◽  
Vol 63 (No. 12) ◽  
pp. 545-551 ◽  
Author(s):  
Wu Guo-Qiang ◽  
Liu Hai-Long ◽  
Feng Rui-Jun ◽  
Wang Chun-Mei ◽  
Du Yong-Yong

The objective of this study was to investigate whether the application of silicon (Si) ameliorates the detrimental effects of salinity stress on sainfoin (Onobrychis viciaefolia). Three-week-old seedlings were exposed to 0 and 100 mmol/L NaCl with or without 1 mmol/L Si for 7 days. The results showed that salinity stress significantly reduced plant growth, shoot chlorophyll content and root K<sup>+</sup> concentration, but increased shoot malondialdehyde (MDA) concentration, relative membrane permeability (RMP) and Na<sup>+</sup> concentrations of shoot and root in sainfoin compared to the control (no added Si and NaCl). However, the addition of Si significantly enhanced growth, chlorophyll content of shoot, K<sup>+</sup> and soluble sugars accumulation in root, while it reduced shoot MDA concentration, RMP and Na<sup>+</sup> accumulation of shoot and root in plants under salt stress. It is clear that silicon ameliorates the adverse effects of salt stress on sainfoin by limiting Na<sup>+</sup> uptake and enhancing selectivity for K<sup>+</sup>, and by adjusting the levels of organic solutes. The present study provides physiological insights into understanding the roles of silicon in salt tolerance in sainfoin.


Author(s):  
Shankar Lal Khaswan ◽  
R. K. Dubey ◽  
R. C. Tiwari ◽  
S. K. Dubey ◽  
Raj Kumari Chaudhary

An experiment was conducted at the Instructional Farm of Rajasthan College of Agriculture, Udaipur during Kharif 2009 and 2010 on medium clay loam soils to assess the influence of different levels and sources of phosphorus fertilization as well as plant growth regulators on productivity of soybean. Twenty seven treatments i.e. three levels (20, 30 and 40 kg P2O5 ha-1) and three sources (Single super phosphate or SSP; phosphorus rich organic manure or PROM and di-ammonium phosphate or DAP) of phosphorus in main plots and three PGRs (water spray, benzyl adenine 50 ppm and NAA 100 ppm) in sub plots of a split plot design having three replications. Results revealed that application of 40 kg P2O5 ha-1 recorded significantly higher pooled yield (q ha-1) of grain (25.95), stover (37.34) and total biomass (63.29); crop growth rate or CGR (g m-2day-1) between 30-60 days after sowing ( DAS)(18.83) and 61-90 DAS (11.96); total chlorophyll content at 45 DAS (2.26%) and 60 DAS (2.80%); Leaf area index(LAI) at 45 DAS (1.56) and 60 DAS (3.44) and green leaves plant-1 at 45 DAS (11.98) and 60 DAS (21.43). Among different phosphorus sources, SSP outperformed DAP and PROM on pooled yield (q ha-1) of grain (25.12), stover (36.23) and total biomass (61.35); CGR (g m-2day-1) between 30-60 DAS (11.22) and 61-90 DAS (10.94); total chlorophyll content at 45 DAS (2.26%) and 60 DAS (2.76%); LAI at 45 DAS (1.51) and 60 DAS (3.42) and green leaves plant-1 at 45 DAS (11.77) and 60 DAS (21.35). Foliar application of NAA recorded significantly higher pooled yield (q ha-1) of grain (24.23), stover (35.73) and total biomass (60.01) than benzyl adenine and water spray. However, variations recorded under NAA and benzyl adenine in CGR, total chlorophyll content, LAI and green leave plant-1at different stages of soybean crop were statistically at par.


2017 ◽  
Vol 45 (2) ◽  
pp. 141
Author(s):  
Lakshmipathi, J. D. Adiga D. Kalaivanan and G.K. Halesh

<p>An experiment was conducted to study the effect of exogenous application of growth regulators at three important growth stages<br />(flushing, flowering and fruiting) on leaf area, chlorophyll content, carotenoids, stomatal count and yield of cashew var. Bhaskara.<br />Irrespective of growth stages, foliar application of GA3 @ 50 ppm and ethrel @ 50 ppm was found to be superior in all the<br />parameters and on par with each other compared to other growth regulators. Out of nine treatments of different growth regulators;<br />the highest leaf area was recorded in trees sprayed with GA3 @ 50 ppm and ethrel @ 50 ppm. At flushing stage, spraying with GA3<br />@ 50 ppm resulted in highest stomatal number (21.9) and carotenoids (0.41) whereas unsprayed (control) trees recorded least<br />stomatal number (11.6) and carotenoids (0.19). Thus, leaf area, chlorophyll content, carotenoids and stomatal count increased in<br />trees sprayed with growth regulators than unsprayed trees. Spraying of ethrel @ 50 ppm recorded highest nut yield<br />(14.3 kg tree-1) followed by NAA @ 25 ppm + GA3 50 ppm (12.9 kg tree-1). This study demonstrated the potential of ethrel as well<br />as GA3 in improving various biochemical parameters viz., chlorophyll ‘a’, chlorophyll ‘b’, carotenoids and leaf area in cashew<br />which are important determinants in increasing nut production.</p>


Sign in / Sign up

Export Citation Format

Share Document