Empirical modelling of tensile strength of woven fabrics

2008 ◽  
Vol 9 (2) ◽  
pp. 240-245 ◽  
Author(s):  
Abhijit Majumdar ◽  
Anindya Ghosh ◽  
Shib Sankar Saha ◽  
Ayan Roy ◽  
Subir Barman ◽  
...  
2020 ◽  
Vol 7 (1) ◽  
pp. 21-30
Author(s):  
Fahmida Siddiqa ◽  
Md. Mahbubul Haque ◽  
Shamima Akter Smriti ◽  
Nawshin Farzana ◽  
Abu Naser MD. Ahsanul Haque

Stretch woven fabrics continue to grow in popularity, offering superior elastic properties and comfort. However, there are a number of factors (e.g., elongation, recovery, growth, tensile strength, tearing strength, and shrinkage) that can affect the attributes and performance of stretch woven fabric. These were investigated in the present study in relation to different elastane content and thread density. Blended cotton woven fabrics containing an increased elastane content gave enhanced elongation and recovery, despite a decrease in thread density. The tensile strength, tearing strength, shrinkage, and fabric growth decreased when the elastane ratio increased, regardless of the decline in warp thread density.


1990 ◽  
Vol 112 (2) ◽  
pp. 125-130 ◽  
Author(s):  
Chienhom Lee ◽  
Dahsin Liu

Stitching has been found to be able to improve the interlaminar strength of composite laminates. Its application as composite joining has been also explored. This study examined the tensile strength of some stitched composite beams made of woven glass fabric and epoxy matrix. The effects of stitching parameters on joining strength were evaluated by both experimental technique and finite element method. It was found that there were two basic ways to improve the strength of stitching joint. One was to use high-density stitching in nonoverlap joint and the other was to use chain stitching in overlap joint. However, the former could give smoother surface and more uniform thickness than the latter. In addition, it was concluded from this study that stitching joint was more suitable for woven fabrics than for unidirectional prepreg tapes.


2019 ◽  
Vol 7 (2) ◽  
pp. 207-220 ◽  
Author(s):  
Lisa Oktavia Br Napitupulu ◽  
Asri Widyasanti ◽  
Ahmad Thoriq ◽  
Asep Yusuf

Sansevieria or known as tongue-in-law plant is an ornamental plant that is quite popular in Indonesia. This plant is very easily cultivated, easy to grow in areas with less water and sunlight. This plant contains potential natural fibers used as raw material requirements for textile industry, specifically in fabric making. The aims of this research were to determine the production process consisting and analyzing the characteristics of woven fabrics from the leaves of the tongue-in-law plant. The method of fibers extraction used the mechanical decortication process and making woven fabric is done using ATBM. The research method used is descriptive method. Based on the results of the study, it is known that the woven cloth of tongue-in-law has color characteristics with a value of L* 69.73; a* 1.86; b* 17,38; H 83,88. Besides that, it is known the mechanical characteristics of the tongue-in-law woven fabric, the tensile strength of the fabric, the weft  direction of 46.05 kg and the warp direction of 19.96 kg; weft direction stretch 22% and stretch direction of the warp of 55.20%; weft direction tear strength 19.17% and wrap direction 4.60%; and air penetrating power 116.2 cm3/cm2/s.The value of the tensile strength of the tongue-in-law woven fabric produced in the warp direction does not meet the standards of SNI 08-0056-2006 woven fabric quality requirements for suit.Therefore, woven fabric produced is intended as a craft material.


2010 ◽  
Vol 452-453 ◽  
pp. 301-304
Author(s):  
Kazuto Tanaka ◽  
Masahiro Yamada ◽  
Masahiro Shinohara ◽  
Tsutao Katayama

The non-crimp fabric (NCF) have an advantageous combination of high material properties and low cost for processing, and overcomes the disadvantages of the crimp factor of woven fabrics, providing full use of modulus and strength of reinforcing fibre. For using NCF, different stitching tension and thread of non-crimp fabrics may cause the mechanical properties of CFRTP. In this study, it is aimed to clarify the effect of stitching tension and thread of non-crimp fabrics on tensile strength of CFRTP. The disorder degree of the thickness direction in the fibre bundle and the ratio of resin rich area were examined by the SEM image analysis. There is the inverse correlation between tensile strength and the disorder degree to the thickness direction in the fibre bundle.


2018 ◽  
Vol 89 (16) ◽  
pp. 3326-3341
Author(s):  
D Weise ◽  
M Vorhof ◽  
R Brünler ◽  
C Sennewald ◽  
G Hoffmann ◽  
...  

In this paper, a constructively and technologically modified leno loom is introduced, which enables for the first time the low-damage processing of coarse high-performance fibers such as heavy tows with a non-crimped warp and weft yarn system to scrims. The modified leno loom requires just a single shedding element to achieve the vertical and horizontal offset motion of the weft yarn system for pattern generation. These modifications allow the low-damage processing of coarse high-performance fibers in the warp (straight yarn) and the weft yarn systems to create leno fabrics. These leno fabrics produced with the modified loom are investigated experimentally. By means of a three-factorial analysis of variance, the influence of tensile forces operating during processing and weft density on the crimp and the tensile strength of the straight yarn is examined. It is revealed that the property degradation (tensile/breaking strength) of the straight yarn caused by the weaving process is drastically reduced to 4.2% compared to an unprocessed roving. The determined crimp of the straight yarn affected by process-inherent tensile forces is 0.1% at its maximum. Thus, the presented leno-woven fabrics offer an enormous application potential for the reinforcement of brittle matrices, such as ceramic or concrete.


2011 ◽  
Vol 6 (4) ◽  
pp. 155892501100600 ◽  
Author(s):  
Zulfiqar Ali Malik ◽  
Mumtaz Hasan Malik ◽  
Tanveer Hussain ◽  
Farooq Ahmed Arain

Tensile strength has been accepted as one of the most important performance attributes of woven textiles. In this work, multiple linear regression models are developed by using empirical data for the prediction of woven fabric tensile strength manufactured from cotton yarns. Tensile strength of warp & weft yarns, warp & weft fabric density, and weave design were used as input parameters to determine warp- and weft-way tensile strength of the woven fabrics. The developed models are able to predict the fabric strength with very good accuracy. Warp yarn strength and ends per 25 mm are found to be the most dominant factors influencing fabric strength in warp direction while weft yarn strength and picks per 25 mm are most vital in weft direction.


2017 ◽  
Vol 47 (6) ◽  
pp. 1342-1356 ◽  
Author(s):  
N Senthil Kumar ◽  
K Shabaridharan ◽  
R Perumalraj ◽  
V Ilango

In this study, bamboo and polypropylene fibers have been selected to produce non-woven fabrics using needle punching machines. The non-woven fabrics were produced with bamboo and polypropylene blends of 80%/20%, 20%/80% and 50%/50%, respectively. The cross-directional tensile properties of produced non-woven fabrics were analyzed using Box–Behnken experimental design for three factors and three levels by varying aerial density, punch density and depth of needling penetration. It was observed that the 20% bamboo/80% polypropylene non-woven fabrics have higher tensile strength and elongation than the other two blend proportions. The tensile strength increases with increase in aerial density, punch density and depth of needle penetration.


2015 ◽  
Vol 749 ◽  
pp. 257-260
Author(s):  
Jia Horng Lin ◽  
Chih Kuang Chen ◽  
Wen Cheng Chen ◽  
Yu Chieh Tung ◽  
Ching Wen Lou

In this study, high density polyethylene (HDPE) is reinforced by the combination of clay to form HDPE/clay composites by applying maleic anhydride grafted polyethylene (PE-g-MA) as a compatibilizer and a melt compounding method. The properties of composites are evaluated with a tensile strength test, a scanning electron microscope (SEM), and a differential scanning calorimetry (DSC). Next, such composites are laminated with glass fiber woven fabrics (GFW) to form HDPE/clay/GFW composites by using a thermal compression molding method. A tensile strength test and an SEM are used to measure the properties of the HDPE/clay/GFW composites. The test results show that the combination of clay in HDPE/clay composites does not provide their tensile strength with a distinct reinforcement. However, the dispersion of clay promotes the crystallization temperature of the HDPE/clay composites. In addition, using PE-g-MA as the compatibilizer results in a good adhesion of HDPE/clay composites to GFW, which in turn augments the tensile strength of the HDPE/clay/GFW composites.


2020 ◽  
Vol 15 ◽  
pp. 155892502098595
Author(s):  
Metin Yuksek

The demand for multifunctional requirements in aerospace, military, automobile, sports, and energy applications has encouraged the investigation of new conductive composite fibers. This study focuses on the development of Vapor-grown carbon nanofibers (VGCNFs) filled Polyvinylidene Fluoride (PVDF) composite fibers. Polyvinylidene fluoride (PVDF) reinforced with (1, 3, 5, and 8 wt.%) carbon nanofibers were produced as a masterbatch. The production of PVDF and PVDF/CNF composite fibers have been done successfully by using melt spinning processing technique. Conductive woven fabrics were produced with composite fibers on handloom machines to measure electromagnetic interference (EMI) shielding efficiency. Tensile strength of fibers increased with increase in CNF loading up to 3%. The tensile strength displayed a decrease of 5% and 8% CNF loading. Electromagnetic shielding effectiveness (EMSE) of woven fabrics with composite fibers were tested by using the coaxial transmission line method for planar materials standard that is based on ASTM D 4935-10. The electromagnetic shielding effectiveness of woven fabric which is consist of conductive composite fibers were increased with increasing CNFs loading and amount of fabric layers. It can be seen that the woven fabrics displayed between 2–10 dB and 2–4 dB EMSE values in the 15–600 MHz and 600–3000 MHz-frequency range, respectively. Nevertheless, it was observed that conductive filler content, dispersion, and network formation within the composite fibers were highly influent on the electromagnetic shielding effectiveness performance of the structures.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 1
Author(s):  
Andrzej Ambroziak ◽  
Paweł Kłosowski

The impact of water-induced degradation on the mechanical properties of the chosen two PTFE-coated, glass threads woven fabrics is investigated in this paper. The paper begins with a survey of literature concerning the investigation and determination of coated woven fabric properties. The authors carried out the uniaxial tensile tests with an application of flat and curved grips to establish the proper values of the ultimate tensile strength and the longitudinal stiffness of groups of specimens treated with different moisture conditions. Despite the water resistance of the main materials used for fabrics manufacturing, the change of the mechanical properties caused by the influence of water immersion has been noticed. The reduction in the tensile strength resulting under waterlogged is observed in the range from 5% to 16% depending on the type of investigated coated woven fabric and direction of weft or warp.


Sign in / Sign up

Export Citation Format

Share Document