Microstructural Characterization and Investigation on Corrosion Properties of Mg-Zn-RE-Ca Alloy as a Possible Biomedical Implant

Author(s):  
Milad Johari ◽  
Seyed Hadi Tabaian ◽  
Shahaboddin Saeedi
Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 748
Author(s):  
Katayoon Kalantari ◽  
Bahram Saleh ◽  
Thomas J. Webster

Metallic materials are widely used for fabricating medical implants due to their high specific strength, biocompatibility, good corrosion properties, and fatigue resistance. Recently, titanium (Ti) and its alloys, as well as stainless steel (SS), have attracted attention from researchers because of their biocompatibility properties within the human body; however, improvements in mechanical properties while keeping other beneficial properties unchanged are still required. Severe plastic deformation (SPD) is a unique process for fabricating an ultra-fine-grained (UFG) metal with micrometer- to nanometer-level grain structures. SPD methods can substantially refine grain size and represent a promising strategy for improving biological functionality and mechanical properties. This present review paper provides an overview of different SPD techniques developed to create nano-/ultra-fine-grain-structured Ti and stainless steel for improved biomedical implant applications. Furthermore, studies will be covered that have used SPD techniques to improve bone cell proliferation and function while decreasing bacterial colonization when cultured on such nano-grained metals (without resorting to antibiotic use).


Author(s):  
A. Milanti ◽  
H. Koivuluoto ◽  
P. Vuoristo ◽  
G. Bolelli ◽  
F. Bozza ◽  
...  

Thermally sprayed iron-based coatings are being widely studied as alternative solution to conventional hardmetal (cermet) and Ni-based coatings for wear and corrosion applications in order to reduce costs, limit environmental impact and enhance the health safety. The aim of the present work is to study the cavitation erosion behaviour in distilled water and the corrosion properties in acidic solution of four high-velocity oxy-fuel (HVOF) sprayed Fe-based composite coatings. Fe-Cr-Ni-B-C powder was selected for its good sliding wear properties. In addition, a powder composition with an addition of Mo was studied in order to increase the corrosion resistance whereas additions of 20 wt. % and 40 wt. % WC-12Co as blended powder mixtures were investigated in order to increase wear resistance. Improvement of coating properties was significant with the advanced powder compositions. Dense coating structures with low porosity were detected with microstructural characterization. In addition, good cavitation wear resistance was achieved. The cavitation resistance of customized Fe-based coating with Mo addition was reported to be twice as high as that of conventional Ni-based and WC-CoCr coatings. The corrosion properties of HVOF Fe-based coatings were also evaluated by studying electrochemical behaviour in order to analyse their potential to use as corrosion barrier coatings.


2015 ◽  
Vol 1128 ◽  
pp. 127-133
Author(s):  
Iulia Florea ◽  
Gheorghe Buluc ◽  
Romeu Chelariu ◽  
Elena Raluca Baciu ◽  
Ioan Carcea

Using new high entropy alloy with chemical formula AlCrNiCuMn produced by high technology (induction melt method), in manufacture of new composite materials will enable the creation of new structures resistant to stress used dynamic collective protection. Specify that High Entropy Alloys are characterized as alloys consisting of approximate equal concentrations of at least five metallic elements and are claimed to favor close-packed, disordered structures due to high configurational entropy. In this study, we investigate the microstructure and corrosion properties of AlCrNiCuMn high-entropy alloys. The type of high entropy alloys manufactured was a five-component alloy of AlCrNiCuMn. The microstructure and corrosion resistance property of high-entropy alloys AlCrNiCuMn were determined by scanning electron microscopy and electrochemical workstation. Microstructural characterization was performed by electron microscopy on LMHII VegaTescan equipment using a secondary electron detector (SE) at a voltage of 30 kV electron gun.


2015 ◽  
Vol 1119 ◽  
pp. 505-509
Author(s):  
H. Ozkan Gulsoy ◽  
Serdar Pazarlioglu ◽  
Semih Ozbey

The objective of this research is to investigate the effect of Zr, Nb and Ti additions on microstructural, mechanical and electrochemical properties of injection molded 316L stainless steel. The amount of additive powder plays a role in determining the sintered microstructure and all properties. In this study, 316L stainless steel powders used with the elemental Zr, Nb and Ti powders. The binders were completely removed from molded components by solvent and thermal debinding. The debinded samples were sintered at different temperature for 60 min. at different temperatures. Mechanical property, microstructural characterization and electrochemical property of the sintered samples were performed using tensile testing, hardness, optical, scanning electron microscopy and electrochemical experiments. Results of study showed that sintered 316L and 316L with additive powder samples exhibited high mechanical and corrosion properties in a physiological environment.


Author(s):  
Leon White ◽  
Sudheer Neralla ◽  
Ruben Kotoka ◽  
Yongseok Jang ◽  
Yeoheung Yun ◽  
...  

In recent years, magnesium (Mg) alloys have emerged as possible biodegradable implant materials; however the degradation rate of Mg occurs at a higher rate than tolerable for the human body. Plasma electrolytic oxidation (PEO) has been used in the past as a useful surface treatment technique to improve the anti-corrosion properties of Mg alloys by forming protective coatings. This present work focuses on the effect of electrolyte solution on the corrosion, microstructural, and nanomechanical behavior of PEO coatings for possible use in biodegradable implants. The experimental parameters applied during PEO process did influence the structure, thickness, and morphology of the coating. Microstructural characterization of the coating was carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM) followed by image analysis and energy dispersive spectroscopy (EDX). Further, nanoindentation was employed to evaluate nanohardness and Young’s modulus of the PEO coating. The results show beneficial effects of the PEO coating to enhance the corrosion resistance of the uncoated AZ31 magnesium alloy. The XRD pattern shows that the components of the film vary based on electrolyte solution. The film composition does affect the nanomechanical behavior.


Author(s):  
M.A. Parker ◽  
K.E. Johnson ◽  
C. Hwang ◽  
A. Bermea

We have reported the dependence of the magnetic and recording properties of CoPtCr recording media on the thickness of the Cr underlayer. It was inferred from XRD data that grain-to-grain epitaxy of the Cr with the CoPtCr was responsible for the interaction observed between these layers. However, no cross-sectional TEM (XTEM) work was performed to confirm this inference. In this paper, we report the application of new techniques for preparing XTEM specimens from actual magnetic recording disks, and for layer-by-layer micro-diffraction with an electron probe elongated parallel to the surface of the deposited structure which elucidate the effect of the crystallographic structure of the Cr on that of the CoPtCr.XTEM specimens were prepared from magnetic recording disks by modifying a technique used to prepare semiconductor specimens. After 3mm disks were prepared per the standard XTEM procedure, these disks were then lapped using a tripod polishing device. A grid with a single 1mmx2mm hole was then glued with M-bond 610 to the polished side of the disk.


Author(s):  
M. G. Burke ◽  
M. N. Gungor ◽  
P. K. Liaw

Aluminum-based metal matrix composites offer unique combinations of high specific strength and high stiffness. The improvement in strength and stiffness is related to the particulate reinforcement and the particular matrix alloy chosen. In this way, the metal matrix composite can be tailored for specific materials applications. The microstructural characterization of metal matrix composites is thus important in the development of these materials. In this study, the structure of a p/m 2014-SiC particulate metal matrix composite has been examined after extrusion and tensile deformation.Thin-foil specimens of the 2014-20 vol.% SiCp metal matrix composite were prepared by dimpling to approximately 35 μm prior to ion-milling using a Gatan Dual Ion Mill equipped with a cold stage. These samples were then examined in a Philips 400T TEM/STEM operated at 120 kV. Two material conditions were evaluated: after extrusion (80:1); and after tensile deformation at 250°C.


Author(s):  
C. J. Chan ◽  
K. R. Venkatachari ◽  
W. M. Kriven ◽  
J. F. Young

Dicalcium silicate (Ca2SiO4) is a major component of Portland cement. It has also been investigated as a potential transformation toughener alternative to zirconia. It has five polymorphs: α, α'H, α'L, β and γ. Of interest is the β-to-γ transformation on cooling at about 490°C. This transformation, accompanied by a 12% volume increase and a 4.6° unit cell shape change, is analogous to the tetragonal-to-monoclinic transformation in zirconia. Due to the processing methods used, previous studies into the particle size effect were limited by a wide range of particle size distribution. In an attempt to obtain a more uniform size, a fast quench rate involving a laser-melting/roller-quenching technique was investigated.The laser-melting/roller-quenching experiment used precompacted bars of stoichiometric γ-Ca2SiO4 powder, which were synthesized from AR grade CaCO3 and SiO2xH2O. The raw materials were mixed by conventional ceramic processing techniques, and sintered at 1450°C. The dusted γ-Ca2SiO4 powder was uniaxially pressed into 0.4 cm x 0.4 cm x 4 cm bars under 34 MPa and cold isostatically pressed under 172 MPa. The γ-Ca2SiO4 bars were melted by a 10 KW-CO2 laser.


Author(s):  
R. E. Franck ◽  
J. A. Hawk ◽  
G. J. Shiflet

Rapid solidification processing (RSP) is one method of producing high strength aluminum alloys for elevated temperature applications. Allied-Signal, Inc. has produced an Al-12.4 Fe-1.2 V-2.3 Si (composition in wt pct) alloy which possesses good microstructural stability up to 425°C. This alloy contains a high volume fraction (37 v/o) of fine nearly spherical, α-Al12(Fe, V)3Si dispersoids. The improved elevated temperature strength and stability of this alloy is due to the slower dispersoid coarsening rate of the silicide particles. Additionally, the high v/o of second phase particles should inhibit recrystallization and grain growth, and thus reduce any loss in strength due to long term, high temperature annealing.The focus of this research is to investigate microstructural changes induced by long term, high temperature static annealing heat-treatments. Annealing treatments for up to 1000 hours were carried out on this alloy at 500°C, 550°C and 600°C. Particle coarsening and/or recrystallization and grain growth would be accelerated in these temperature regimes.


Sign in / Sign up

Export Citation Format

Share Document