scholarly journals Ferrochrome Slag Feasibility as a Raw Material in Refractories: Evaluation of Thermo-physical and High Temperature Mechanical Properties

2020 ◽  
Vol 11 (12) ◽  
pp. 7147-7157 ◽  
Author(s):  
Marjaana Karhu ◽  
Bob Talling ◽  
Patrycja Piotrowska ◽  
Alba Matas Adams ◽  
Abirami Sengottuvelan ◽  
...  

AbstractThis paper reports the characteristics of ferrochrome slag and its feasibility as aggregate in refractories aiming to substitute virgin refractory raw materials. Refractory castable specimens were formulated with ferrochrome slag as an aggregate and commercial calcium aluminate cement as a binder. Objective was to prepare refractory specimens with a maximum slag utilization but simultaneously to sustain good properties, comparable to those of virgin raw material refractory products. Mechanical and thermo-physical properties of the cured, dried and sintered specimens were characterized. Cold crushing strengths of best performing ferrochrome slag containing specimens were higher than 90 MPa and compressive strength values measured at 1200 °C were over 9 MPa. Thermal insulation properties were even better than those of commercial refractory reference, showing thermal conductivity values as low as λRT−1000 °C = 1.3 − 0.9 W/m K. The liquid phase formation above 1200 °C limits the ferrochrome slag use for refractory applications. Results suggest ferrochrome slag’s feasibility as an aggregate raw material for refractory materials up to temperatures of 1200 °C in air and up to temperatures of 700 °C in acidic gaseous atmosphere. Possible applications for this kind of novel refractory materials are, e.g., insulating secondary layers or bottom zones in metallurgical processes to substitute virgin refractories. A direct contact to molten metal must be avoided, but they are applicable as, e.g. floorings when exposed only to occasional melt droplets. Graphic Abstract

2021 ◽  
Vol 36 ◽  
pp. 04002
Author(s):  
Ivan Yeo

In this paper, we study an inventory system over an infinite planning horizon where a time-varying demand is satisfied by process cycles that consist of a production batch followed by a recovery batch. Our model considers three types of inventory—returned items, serviceable items, and raw material. Furthermore, our model considers two recovery channels—recovery into serviceable items and recovery into raw material. Serviceable items are thus sourced from two inputs—direct recovery and production from raw material. These raw materials can be salvaged from returned items, as well as bought from external sources whenever required. We propose an expression for the unit time total cost as well as a numerical method to find the optimal policy. The properties of the model are studied through numerical experiments, in particular, the feasible situations where hybrid policies are better than pure policies.


2012 ◽  
Vol 4 (2) ◽  
pp. 16
Author(s):  
A Sulaiman

The research of Distillation And Raw Material Composition Effect of Yield And Quality EssentialOil of Leaves And Stem Patchouli (Pogostemon cablin Benth). This study aimed to examine the influence of the length of distillation and composition of raw materials to the yield and quality of essential oil of patchouli leaves and stems to produce essential oils that have a high quality and yield. The time required to obtain the highest yield of patchouli oil is 8 hours, by composition of 100% leaf (1:0), that is equal to 3.631%, while the lowest yield of patchouli oil are produced from 100% stem (1:0) by distillation of 4 hours, in the amount of 0.10%. Composition that produces patchouli oil with the best quality is 100% stems (0:1) but that yield is lower, while the quality of patchouli oil produced by 100% leaf (1:0) and a mixture of leaf-stem (1:1) quality is still lower than the patchouli oil from the stem, but its yield is better than the yield of oil patchouli by 100% composition of the stem (0:1).Keywords:  essential oil, pogostemon cablin benth, yield


2010 ◽  
Vol 64 (2) ◽  
pp. 149-156
Author(s):  
Katarina Pavlovic ◽  
Vojislav Bozanic ◽  
Jasna Stanojevic ◽  
Vesna Milicevic ◽  
Bojan Ilic

The presence of hemolytic material in contact with blood may produce increased levels of blood cell lysis and increased levels of plasma hemoglobin. This may induce toxic effects or other effects which may stress the kidneys or other organs. In this paper two variants of in vitro method and obtained results? comparison were presented for testing of hemolytic properties of six raw materials (Polipropylene Moplen EP 540 P, Policarbonate colorless 164 R-112, Policarbonate brown 164 R-51918, Polietylene NG 3026 K, Polietylene NG - Purell GB 7250, Polietylene VG - Hiplex 5502) for medical device manufacturing and one raw material (Polietylen NG granulate) used for infusion solutions?s plastic bottles manufacturing. One of method?s variants relies on raw material direct contact with swine blood and the other on extract of the material contact with swine blood. Both method?s variants imply reading of the absorbance of the supernatant after tubes were incubated and centrifuged. According to values obtained and using the standard curve free hemoglobin concentration is determined and based on this percentage hemolysis of raw material. Positive and negative controls were used in both variants where water for injection (WFI) was used as positive control in which partial or complete hemolysis of erythrocytes occurs due to osmotic shock and phosphate buffer saline was used as negative control with no hemolytic property. In this paper comparison of results obtained by both method?s variants for testing of seven raw materials was presented, while these conclusions can not be used neither for all materials, nor for all applications without preliminary testing using both variants and then choosing more sensitive and more reliable one. It was shown and stated in the paper as well that incubation time being 3, 15 or 24 h, had no impact on the variant?s with direct contact sensitivity. This comparative approach was used for drawing conclusions in terms of suitability for application of one or the other method?s variant, as well as for defining relevant incubation time and finally for choosing more sensitive and more reliable variant for assessment of hemolytic properties of raw materials. Variant with direct contact was chosen from the aspect of less complexity regarding necessary laboratory equipment which makes it economically more favorable and fit for the purpose.


Author(s):  
Z. R. Kadyrova ◽  
R. Kh. Pirmatov ◽  
A. A. Eminov

The results of studies of promising raw material resources of Uzbekistan (enriched kaolins, bauxite-like rock, highalumina waste from the gas processing industry) to obtain high-alumina aggregates are presented. It is established that these raw materials in terms of their physico-chemical indicators meet the requirements for aluminosilicate and high-alumina materials used in metallurgical units. Ref. 13. Tab. 3.


2019 ◽  
Vol 16 (3) ◽  
pp. 334-351
Author(s):  
A. S. Mavlyanov ◽  
E. K. Sardarbekova

Introduction. The objective of the research is to study the effect of the complex activation of the alumina raw material on the rheological properties of the ceramic mass. In addition, the authors investigate solutions for the application of optimal coagulation structures based on loams and ash together with plastic certificates.Materials and methods. The authors used the local forest like reserves of clay loams at the BashKarasu, ash fields of the Bishkek Central Heating Centre (BTEC) and plasticizer (sodium naphthenate obtained from alkaline chemical production wastes) as fibrous materials. Moreover, the authors defined technological properties of raw materials within standard laboratory methodology in accordance with current GOSTs.Results. The researchers tested plastic durability on variously prepared masses for the choice of optimal structures. The paper demonstrated the plastic durability of complexly activated compounds comparing with non-activated and mechanically activated compounds. The sensitivity coefficient increased the amount of clay loams by mechanically and complexly activated, which predetermined the possibility of intensifying the process of drying samples based on complexly activated masses.Discussion and conclusions. However, mechanical activation of clay material reduces the period of relaxation and increases the elasticity coefficient of ceramic masses by 1.8–3.4 times, meanwhile decreases elasticity, viscosity and the conventional power during molding, which generally worsens the molding properties of the masses. Сomplex activation of ash-clay material decreases the period of relaxation and provides an increase in elasticity, plasticity of ceramic masses by 46–47%, reduction in viscosity by 1.5–2 times, conventional power on molding by 37–122% in comparison with MA clay loams. Ceramic masses based on spacecraft alumina raw materials belong to the SMT with improved rheological properties; products based on them pass through the mouthpiece for 5–7 seconds.


2018 ◽  
Vol 7 (2) ◽  
Author(s):  
Firman L. Sahwan

Organic materials that are generally used as raw material for organic fertilizer granules (POG) is a natural organic material that has been degrade, smooth and dry. One of the main raw materials are always used with a very high percentage of usage, is manure. Manure potential in Indonesia is very high, amounting to 113.6 million tons per year, or 64.7 million tons per year to the island of Java. From this amount, it will be generated numbers POG production potential of 17.5 million tons per year (total Indonesia) or 9.9 million tons per year for the island of Java. While the realistic POG production predictions figures made from raw manure is 2.5 million tons annually, a figure that has been unable to meet the number requirement of POG greater than 4 million tons per year. Therefore, in producing POG, it should be to maximize the using of the potential of other organic materials so that the use of manure can be saved. With the use of a small amount of manure (maximum 30% for cow manure), it would be useful also to avoid the production of POG with high Fe content.keywods: organic material, manure, granule organic fertilizer


Food Industry ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 61-70
Author(s):  
Oliya Fazullina ◽  
Stanislav Smirnov

Health indicators of the population depend significantly on the food quality and nutritional value. Simple carbohydrates excess of and lack of protein, dietary fiber, vitamins, minerals, antioxidants and other physiologically active substances increase the risk of socially significant disease progress. The development and production of mass-consumed products with high nutritional and biological value, including affordable non-traditional raw materials use, are promising areas of the food industry development aimed at improving the nutritional status of the population. The article presents the research results on the developed Noodle products recipes from non-traditional raw materials that meet modern healthy nutrition requirements, intended for dietary treatment and dietary prevention of people with overweight / obesity. The research aimed at expanding the range of macaroni products with these characteristics. As the main raw material, a man selected whole-wheat flour – new spelt flour, and as additional raw materials – buckwheat flour, broccoli and celery powders. The researchers found that the introduction of macaroni products from buckwheat spelt, broccoli and celery powders into the recipe had a multidirectional effect, reducing or increasing various indicators of its nutritional value. The changes range did not affect the overall characteristics. The satisfaction degree of the average daily need for food substances and energy when consuming a portion of 100 g for each sample of developed Noodle products allows them to be classified as functional products that are protein and dietary fiber sources, according to the requirements of the TR CU 022/2011.


1982 ◽  
Vol 21 (4) ◽  
pp. 329-333
Author(s):  
Rashid Aziz

The book under review is a concise but fairly in-depth study of the prospects for export diversification from the Less Developed Countries (henceforth labeled as LDCs) particularly to Developed Countries (henceforth labeled as OCs). Given the multiple problems faced by the LOCs in exporting to the OCs - protectionist policies with regards to manufactured exports, volatility of prices obtained for raw material exports, etc. - the study analyses the potential for following an intermediate route. The important issues in the export of semi -processed and wholly processed raw materials are discussed. 111ese issues range from the problems and potentials for the location of processing facilities in the LOCs to the formulation of appropriate policies to encourage an export of processed goods rather than raw materials. Such policies will be useful both in solving the balance of-payments problems of the LDCs and in attaining the goal of the Lima Declaration and Plan of Action on Industrial Development and Co-operation, that called for 2S percent of world industrial production to be located in the LOCs by the year 2000.


MANAJERIAL ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 66
Author(s):  
BAYU YRI WIDHARTO

The purpose of the research was to know the affect of many factors which affected to the production volume in PT. Kelola Mina Laut Gresik. What the price of raw materials was and the used of raw materials partially and simultan eously affected on the production volume. The analysis tool which used was a model of multiple linear regression. Hypothesis testing used t test and F test, both at the significant level 5%. Based of the analysis of research on PT Kelola Mina Laut Gresik. Partially, inventory raw material price had not significant effect on the production volume, consumption of raw material inventory affected significantly of the production volume. Inventory of raw material price and the use of raw material simultan eously affect significantly to the production volume.


Author(s):  
I. A. Ilina ◽  
I. A. Machneva ◽  
E. S. Bakun

  The article is devoted to the study of the chemical composition, physical and thermal-pfysical characteristics of damp apple pomaces and the identifying patterns of influence of drying temperature the functional composition and gel-forming ability of pectin. The research is aimed at obtaining initial data for the subsequent calculation of the main technological, hydro-mechanical, thermal, structural and economic characteristics of devices for drying the plant raw materials, ensuring the environmental safety and high quality of pectin-containing raw materials, the reducing heat and energy costs. As a result of the study of the thermal characteristics of apple pomaces, the critical points (temperature conductivity – 16.5 x 10-8 m2/s, thermal conductivity – 0.28 W/m K, heat capacity – 1627 j/(kg K)) at a humidity of 56 % are determined, which characterizing the transition from the extraction of weakly bound moisture to the extraction of moisture with strong bonds (colloidal, adsorption). It was found that the pomaces obtained from apples of late ripening have a higher content of solids (21-23 %), soluble pectin and protopectin (2.5-4.5 %). Dried pomaces obtained from apple varieties of late ripening contain up to 25 % pectin, which allow us to recommend them as a source of raw materials for the production of pectin. The optimum modes of preliminary washing of raw materials are offered, allowing to the remove the ballast substances as much as possible. It is established that when the drying temperature increases, the destructive processes are catalyzed: the strength of the pectin jelly and the uronide component and the degree of pectin esterification are reduced. The optimum drying temperature of damp apple pomaces is 80 0C, at which the quality of pectin extracted from the dried raw materials is maintained as much as possible. It is shown that the most effective for the pectin production is a fraction with a particle size of 3-5 mm, which allow us to extract up to 71 % of pectin from raw materials.


Sign in / Sign up

Export Citation Format

Share Document