scholarly journals Impact of Surface Potential Vorticity Density Forcing over the Tibetan Plateau on the South China Extreme Precipitation in January 2008. Part ll: Numerical Simulation

2019 ◽  
Vol 33 (3) ◽  
pp. 416-432 ◽  
Author(s):  
Jiahui Yu ◽  
Yimin Liu ◽  
Tingting Ma ◽  
Guoxiong Wu

Palaeomagnetic data from the Lhasa, Qiangtang and Kunlun Terranes of the Tibetan Plateau are used with data from stable Eurasia, eastern China and Indochina, to test different models of crustal thickening in the Tibetan Plateau, to attempt a Carboniferous palaeogeographic reconstruction, and to calculate the relative motion between the South China Block and the Indochina Block. The data suggest that since the onset of the India—Eurasia collision, the Lhasa Terrane has moved 2000 + 800 km north with respect to stable Eurasia. This indicates that strong internal defomation must have taken place in southern Eurasia since the collision, and thus challenges the model of large-scale underthrusting of the Indian subcontinent beneath the Tibetan Plateau as the mechanism for crustal thickening in Tibet. Palaeomagnetic results from the Kunlun Terrane show that it was at 22° south latitude during the Carboniferous. A Carboniferous reconstruction is presented in which the Kunlun and Qiangtang Terranes, several Indochina terranes, and the North and South China Blocks are grouped together. These units of continental crust all share the specific tropical and subtropical Cathaysian flora, and the group is therefore called the Cathaysian composite continent. To test the model of propagating extrusion tectonics, we have used newly available palaeomagnetic results from South China and Indochina to calculate probable displacements. This exercise suggests a rotation of about 8° of Indochina with respect to the South China Block that is smaller than the predicted rotation of 40°, A large eastward translation of the South China Block relative to the Indochina Block of about 1500 km is consistent with the palaeomagnetic data.


2018 ◽  
Vol 6 (2) ◽  
pp. SD41-SD55
Author(s):  
Dawei Wang ◽  
Hongliu Zeng ◽  
Shiguo Wu ◽  
Weiwei Wang ◽  
Qingping Li ◽  
...  

Three-dimensional blended data, comprised of amplitude and coherence cubes, are used to analyze the evolution of the Central Canyon System (CCS) since the Late Miocene within the western Qiongdongnan Basin (QDNB), South China Sea. The evolution of the canyon since the late Miocene includes two phases and five stages, with a dramatic change of deepwater sediment bodies from early, predominantly axial channel-levee deposits (CLDs) to late, primarily side mass-transport deposits (MTD). During the first and second stages (approximately 5.3–3.7 Ma), axial CLDs derived from the western slope of the South China Sea dominated the sediment bodies within the canyon. The last three stages (3.7 Ma to Recent) were dominated by side MTD, which originated from the northern slope of the South China Sea. Since the canyon was completely filled at 2.4 Ma, axial CLDs only reactivated in the lower strata of the most southern region of the study area. The time of formation of the CCS (approximately 11.6–8.2 Ma) is almost synchronous with the rise of the Himalayas and the first enhancement of the East Asia monsoon during the middle and late Miocene. The change of deepwater deposits within the canyon, which has varied from CLDs to MTDs since 3.7 Ma, is in phase with the further rapid uplift of the entire Tibetan Plateau and the second enhancement of the East Asia monsoon during the middle Pliocene. This evidence suggests that the formation and filling of the canyon should be controlled by the evolution of the Tibetan Plateau and the East Asia monsoon. Tectonics and the East Asia monsoon controlled the evolution of the CCS by changing erosion rates from the Tibetan Plateau, South China Block, and Indochina Peninsula, and sedimentary rates within the Yinggehai Basin and QDNB.


2021 ◽  
Vol 13 (21) ◽  
pp. 4289
Author(s):  
Yang Li ◽  
Yubao Liu ◽  
Yun Chen ◽  
Baojun Chen ◽  
Xin Zhang ◽  
...  

The spatiotemporal statistical characteristics of warm-season deep convective systems, particularly deep convective systems initiation (DCSI), over China and its vicinity are investigated using Himawari-8 geostationary satellite measurements collected during April-September from 2016 to 2020. Based on a satellite brightness temperature multiple-threshold convection identification and tracking method, a total of 47593 deep convective systems with lifetimes of at least 3 h were identified in the region. There are three outstanding local maxima in the region, located in the southwestern, central and eastern Tibetan Plateau and Yunnan-Guizhou Plateau, followed by a region of high convective activities in South China. Most convective systems are developed over the Tibetan Plateau, predominantly eastward-moving, while those developed in Yunnan-Guizhou Plateau and South China mostly move westward and southwestward. The DSCI occurrences become extremely active after the onset of the summer monsoon and tend to reach a maximum in July and August, with a diurnal peak at 11–13 LST in response to the enhanced solar heating and monsoon flows. Several DCSI hotspots are identified in the regions of inland mountains, tropical islands and coastal mountains during daytime, but in basins, plains and coastal areas during nighttime. DCSI over land and oceans exhibits significantly different sub-seasonal and diurnal variations. Oceanic DCSI has an ambiguous diurnal variation, although its sub-seasonal variation is similar to that over land. It is demonstrated that the high spatiotemporal resolution satellite dataset provides rich information for understanding the convective systems over China and vicinity, particularly the complex terrain and oceans where radar observations are sparse or none, which will help to improve the convective systems and initiation nowcasting.


2021 ◽  
Author(s):  
Yanghang Ren ◽  
Kun Yang ◽  
Han Wang

<p>As region that is highly sensitive to global climate change, the Tibetan Plateau (TP) experiences an intra-seasonal soil water deficient due to the reduced precipitation during the South Asia monsoon (SAM) break. Few studies have investigated the impact of the SAM break on TP ecological processes, although a number of studies have explored the effects of inter-annual and decadal climate variability. In this study, the response of vegetation activity to the SAM break was investigated. The data used are: (1) soil moisture from in situ, satellite remote sensing and data assimilation; and (2) the Normalized Difference Vegetation Index (NDVI) and Solar-Induced chlorophyll Fluorescence (SIF). We found that in the region impacted by SAM break, which is distributed in the central-eastern part of TP, photosynthesis become more active during the SAM break. And temporal variability in the photosynthesis of this region is controlled mainly by solar radiation variability and has little sensitivity to soil moisture. We adopted a diagnostic process-based modeling approach to examine the causes of enhanced plant activity during the SAM break on the central-eastern TP. Our analysis indicates that active photosynthetic behavior in the reduced precipitation is stimulated by increases in solar radiation absorbed and temperature. This study highlights the importance of sub-seasonal climate variability for characterizing the relationship between vegetation and climate.</p>


Author(s):  
Yiming Liu ◽  
Yuhua Wang ◽  
Sanzhong Li ◽  
M. Santosh ◽  
Runhua Guo ◽  
...  

The Tibetan Plateau is composed of several microblocks, the tectonic affinity and paleogeographic correlations of which remain enigmatic. We investigated the Amdo and Jiayuqiao microblocks in central Tibet Plateau with a view to understand their tectonic setting and paleogeographic position within the Neoproterozoic supercontinent Rodinia. We present zircon U-Pb and Lu-Hf isotope, and whole-rock geochemical data on Neoproterozoic granitic gneisses from these microblocks. Zircon grains from the Jiayuqiao granitic gneiss yielded an age of 857 ± 9 Ma with variable εHf(t) values (−8.9 to 4.0). The Amdo granitic gneisses yielded ages of 893 ± 5 Ma, 807 ± 5 Ma, and 767 ± 11 Ma, with εHf(t) values in the range of −4.9 to 3.5. Geochemically, the granitoids belong to high-K calc-alkaline series, with the protolith derived from partial melting of ancient crustal components. The ascending parental magma of the Amdo granitoids experienced significant mantle contamination as compared to the less contaminated magmas that generated the Jiayuqiao intrusions. In contrast to the Lhasa, Himalaya, South China, and Tarim blocks, we suggest that the Amdo and Jiayuqiao microblocks probably formed a unified block during the Neoproterozoic and were located adjacent to the southwestern part of South China craton. The Neoproterozoic magmatism was probably associated with the subduction of the peripheral ocean under the South China craton and the delamination of lithospheric mantle beneath the Jiangnan orogen.


2016 ◽  
Vol 35 (9) ◽  
pp. 1-12 ◽  
Author(s):  
Tongya Liu ◽  
Jiexin Xu ◽  
Yinghui He ◽  
Haibin Lü ◽  
Yuan Yao ◽  
...  

2007 ◽  
Vol 8 (4) ◽  
pp. 770-789 ◽  
Author(s):  
Guoxiong Wu ◽  
Yimin Liu ◽  
Qiong Zhang ◽  
Anmin Duan ◽  
Tongmei Wang ◽  
...  

Abstract This paper attempts to provide some new understanding of the mechanical as well as thermal effects of the Tibetan Plateau (TP) on the circulation and climate in Asia through diagnosis and numerical experiments. The air column over the TP descends in winter and ascends in summer and regulates the surface Asian monsoon flow. Sensible heating on the sloping lateral surfaces appears from the authors’ experiments to be the major driving source. The retarding and deflecting effects of the TP in winter generate an asymmetric dipole zonal-deviation circulation, with a large anticyclone gyre to the north and a cyclonic gyre to the south. Such a dipole deviation circulation enhances the cold outbreaks from the north over East Asia, results in a dry climate in south Asia and a moist climate over the Indochina peninsula and south China, and forms the persistent rainfall in early spring (PRES) in south China. In summer the TP heating generates a cyclonic spiral zonal-deviation circulation in the lower troposphere, which converges toward and rises over the TP. It is shown that because the TP is located east of the Eurasian continent, in summertime the meridional winds and vertical motions forced by the Eurasian continental-scale heating and the TP local heating are in phase over the eastern and central parts of the continent. The monsoon in East Asia and the dry climate in middle Asia are therefore intensified.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1453 ◽  
Author(s):  
Junnan Xiong ◽  
Zhiwei Yong ◽  
Zegen Wang ◽  
Weiming Cheng ◽  
Yi Li ◽  
...  

The Tibetan Plateau is one of the most vulnerable areas to extreme precipitation. In recent decades, water cycles have accelerated, and the temporal and spatial characteristics of extreme precipitation have undergone dramatic changes across the Tibetan Plateau, especially in its various ecosystems. However, there are few studies that considered the variation of extreme precipitation in various ecosystems, and the impact of El Niño-Southern Oscillation (ENSO), and few researchers have made a quantitative analysis between them. In this study, we analyzed the spatial and temporal pattern of 10 extreme precipitation indices across the Tibetan Plateau (including its four main ecosystems: Forest, alpine meadow, alpine steppe, and desert steppe) based on daily precipitation from 76 meteorological stations over the past 30 years. We used the linear least squares method and Pearson correlation coefficient to examine variation magnitudes of 10 extreme precipitation indices and correlation. Temporal pattern indicated that consecutive wet days (CWD) had a slightly decreasing trend (slope = −0.006), consecutive dry days (CDD), simple daily intensity (SDII), and extreme wet day precipitation (R99) displayed significant increasing trends, while the trends of other indices were not significant. For spatial patterns, the increasing trends of nine extreme precipitation indices (excluding CDD) occurred in the southwestern, middle and northern regions of the Tibetan Plateau; decreasing trends were distributed in the southeastern region, while the spatial pattern of CDD showed the opposite distribution. As to the four different ecosystems, the number of moderate precipitation days (R10mm), number of heavy precipitation days (R20mm), wet day precipitation (PRCPTOT), and very wet day precipitation (R95) in forest ecosystems showed decreasing trends, but CDD exhibited a significant increasing trend (slope = 0.625, P < 0.05). In the other three ecosystems, all extreme precipitation indices generally exhibited increasing trends, except for CWD in alpine meadow (slope = −0.001) and desert steppe (slope = −0.005). Furthermore, the crossover wavelet transform indicated that the ENSO had a 4-year resonance cycle with R95, SDII, R20mm, and CWD. These results provided additional evidence that ENSO play an important remote driver for extreme precipitation variation in the Tibetan Plateau.


Sign in / Sign up

Export Citation Format

Share Document