scholarly journals Two-dimensional CFD simulation and pilot-scale experimental verification of a downdraft gasifier: effect of reactor aspect ratios on temperature and syngas composition during gasification

2020 ◽  
Vol 7 (3) ◽  
pp. 536-550
Author(s):  
Chootrakul Siripaiboon ◽  
Prysathyrd Sarabhorn ◽  
Chinnathan Areeprasert

Abstract This paper focuses on a two-dimensional CFD simulation of a downdraft gasifier and a pilot-scale experiment for verification using wood pellet fuel. The simulation work was carried out via the ANSYS-Fluent CFD software package with in-house coding via User Defined Function. Three gasification parameters were taken into account in the simulation and validation to achieve highly accurate results; namely, fuel consumption, temperature profile, and syngas composition. After verification of the developed model, the effects of aspect ratios on temperature and syngas composition were investigated. Results from simulation and experimental work indicated that the fuel consumption rate during the steady state gasification experiment was 1.750 ± 0.048 g/s. The average steady state temperature of the experiment was 1240.32 ± 14.20 K. In sum, the fuel consumption and temperature profile during gasification from modeling and experimentation show an error lower than 1.3%. Concentrations of CO, CO2, H2, and CH4 were 20.42 vol%, 15.09 vol%, 8.02 vol%, and 2.6 vol%, respectively, which are comparable to those of the experiment: 20.00 vol%, 15.48 vol%, 8.00 vol%, and 2.65 vol%. A high concentration of syngas is observed in the outer radial part of the reactor because of the resistive flow of the air inlet and the synthesis gas produced. The average temperatures during the steady state of the gasifier with aspect ratios (H/D) of 1.00, 1.38 (experiment), and 1.82 were 978.77 ± 11.60, 1256.46 ± 9.90, and 1368.94 ± 9.20 K, respectively. The 1.82 aspect ratio reactor has the smallest diameter, therefore the radiative heat transferred from the reactor wall affects the temperature in the reactor. Syngas compositions are comparable. Inverse relationships between the aspect ratios and the syngas LHV, (4.29–4.49 MJ/N m3), cold gas efficiency (29.66% to 31.00%), and carbon conversion (79.59% to 80.87%) are observed.

2014 ◽  
Vol 931-932 ◽  
pp. 1033-1037
Author(s):  
Pongdee Chaijunda ◽  
Chaiyaput Kruehong ◽  
Mallika Thabuot ◽  
Chattichai Waisurasingha ◽  
Prinya Chindaprasirt

This research presents the effect of fuel type on temperature profile within the pyrolysis-, combustion-and reduction-zone of the pilot-scale downdraft gasifier, and the replacement potential of LPG with syngas for electricity production. The experimental results showed that gasification of different fuels have the distinctions of temperature level in each zone. More stable syngas production was obtained either from wood chips (WC) or plastic carrier bag (PCB). In contrast, gasification of aluminum coated plastic bag (ACPB) showed the unsatisfied syngas. From the operation with the dual mode of LPG and syngas for electric production, LPG consumption was reduced about 27.08%, 14.58% and 8.33% when PCB-, WC-and ACPB-syngas were used, respectively.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 658
Author(s):  
Subin Mattara Chalill ◽  
Snehaunshu Chowdhury ◽  
Ramanujam Karthikeyan

Controlled crop growth parameters, such as average air velocity, air temperature, and relative humidity (RH), inside the greenhouse are necessary prerequisites for commercial greenhouse operation. Frequent overshoots of such parameters are noticed in the Middle East. Traditional heating ventilation and air-conditioning (HVAC) systems in such greenhouses use axial fans and evaporative cooling pads to control the temperature. Such systems fail to respond to the extreme heat load variations during the day. In this study, we present the design and implementation of a single span, commercial greenhouse using box type evaporative coolers (BTEC) as the backbone of the HVAC system. The HVAC system is run by a fully-automated real time feedback-based climate management system (CMS). A full-scale, steady state computational fluid dynamics (CFD) simulation of the greenhouse is carried out assuming peak summer outdoor conditions. A pilot study is conducted to experimentally monitor the environmental parameters in the greenhouse over a 20-h period. The recorded data confirm that the crop growth parameters lie within their required ranges, indicating a successful design and implementation phase of the commercial greenhouse on a pilot scale.


2021 ◽  
Vol 5 (2) ◽  
pp. 20
Author(s):  
Mateus Paiva ◽  
Admilson Vieira ◽  
Helder T. Gomes ◽  
Paulo Brito

In the evaluation of gasification processes, estimating the composition of the fuel gas for different conditions is fundamental to identify the best operating conditions. In this way, modeling and simulation of gasification provide an analysis of the process performance, allowing for resource and time savings in pilot-scale process operation, as it predicts the behavior and analyzes the effects of different variables on the process. Thus, the focus of this work was the modeling and simulation of biomass gasification processes using the UniSim Design chemical process software, in order to satisfactorily reproduce the operation behavior of a downdraft gasifier. The study was performed for two residual biomasses (forest and agricultural) in order to predict the produced syngas composition. The reactors simulated gasification by minimizing the free energy of Gibbs. The main operating parameters considered were the equivalence ratio (ER), steam to biomass ratio (SBR), and gasification temperature (independent variables). In the simulations, a sensitivity analysis was carried out, where the effects of these parameters on the composition of syngas, flow of syngas, and heating value (dependent variables) were studied, in order to maximize these three variables in the process with the choice of the best parameters of operation. The model is able to predict the performance of the gasifier and it is qualified to analyze the behavior of the independent parameters in the gasification results. With a temperature between 850 and 950 °C, SBR up to 0.2, and ER between 0.3 and 0.5, the best operating conditions are obtained for maximizing the composition of the syngas in CO and H2.


Author(s):  
Robson L. Silva ◽  
Bruno V. Sant′Ana ◽  
José R. Patelli ◽  
Marcelo M. Vieira

This paper aims to identify performance improvements in cooker-top gas burners for changes in its original geometry, with aspect ratios (ARs) ranging from 0.25 to 0.56 and from 0.28 to 0.64. It operates on liquefied petroleum gas (LPG) and five thermal power (TP) levels. Considering the large number of cooker-top burners currently being used, even slight improvements in thermal performance resulting from a better design and recommended operating condition will lead to a significant reduction of energy consumption and costs. Appropriate instrumentation was used to carry out the measurements and methodology applied was based on regulations from INMETRO (CONPET program for energy conversion efficiency in cook top and kilns), ABNT (Brazilian Technical Standards Normative) and ANP—National Agency of Petroleum, Natural Gas (NG) and Biofuels. The results allow subsidizing recommendations to minimum energy performance standards (MEPS) for residential use, providing also higher energy conversion efficiency and/or lower fuel consumption. Main conclusions are: (i) Smaller aspect ratios result in the same heating capacity and higher efficiency; (ii) higher aspect ratios (original burners) are fuel consuming and inefficient; (iii) operating conditions set on intermediate are lower fuel consumption without significant differences in temperature increases; (iv) Reynolds number lower than 500 provides higher efficiencies.


Energy ◽  
2021 ◽  
pp. 121821
Author(s):  
Muhammad Awais ◽  
Muhammad Mubashar Omar ◽  
Anjum Munir ◽  
Wei li ◽  
Muhammad Ajmal ◽  
...  

2009 ◽  
Vol 626 ◽  
pp. 367-393 ◽  
Author(s):  
STEFAN MÄHLMANN ◽  
DEMETRIOS T. PAPAGEORGIOU

The effect of an electric field on a periodic array of two-dimensional liquid drops suspended in simple shear flow is studied numerically. The shear is produced by moving the parallel walls of the channel containing the fluids at equal speeds but in opposite directions and an electric field is generated by imposing a constant voltage difference across the channel walls. The level set method is adapted to electrohydrodynamics problems that include a background flow in order to compute the effects of permittivity and conductivity differences between the two phases on the dynamics and drop configurations. The electric field introduces additional interfacial stresses at the drop interface and we perform extensive computations to assess the combined effects of electric fields, surface tension and inertia. Our computations for perfect dielectric systems indicate that the electric field increases the drop deformation to generate elongated drops at steady state, and at the same time alters the drop orientation by increasing alignment with the vertical, which is the direction of the underlying electric field. These phenomena are observed for a range of values of Reynolds and capillary numbers. Computations using the leaky dielectric model also indicate that for certain combinations of electric properties the drop can undergo enhanced alignment with the vertical or the horizontal, as compared to perfect dielectric systems. For cases of enhanced elongation and alignment with the vertical, the flow positions the droplets closer to the channel walls where they cause larger wall shear stresses. We also establish that a sufficiently strong electric field can be used to destabilize the flow in the sense that steady-state droplets that can exist in its absence for a set of physical parameters, become increasingly and indefinitely elongated until additional mechanisms can lead to rupture. It is suggested that electric fields can be used to enhance such phenomena.


2010 ◽  
Vol 62 (12) ◽  
pp. 2801-2810 ◽  
Author(s):  
Yen-Hui Lin

A pilot-scale fixed-biofilm reactor (FBR) was established to treat textile wastewater to evaluate the feasibility of replacing conventional treatment processes that involve activated sludge and coagulation units. A kinetic model was developed to describe the biodegradation of textile wastewater by FBR. Batch kinetic tests were performed to evaluate the biokinetic parameters that are used in the model. FBR column test was fed with a mean COD of 692 mg/L of textile wastewater from flow equalization unit. The influent flow rate was maintained at 48.4 L/h for FBR column test. Experimental data and model-predicted data for substrate effluent concentration (as COD), concentration of suspended biomass in effluent and the amount of carbon dioxide (CO2) produced in the effluent agree closely with each other. Microscopic observations demonstrated that the biofilm exhibited a uniform distribution on the surface of polyurethane foam sponge. Under a steady-state condition, the effluent COD from FBR was about 14.7 mg COD/L (0.0213 Sb0), meeting the discharge standard (COD < 100 mg/L) that has been set by the government of Taiwan for textile wastewater effluent. The amount of biofilm and suspended biomass reached a maximal value in the steady state when the substrate flux reached a constant value and remained maximal. Approximately 33% of the substrate concentration (as COD) was converted to CO2 during biodegradation in the FBR test. The experimental and modeling schemes proposed in this study could be employed to design a full-scale FBR to treat textile wastewater.


Sign in / Sign up

Export Citation Format

Share Document