Negative impact of drought stress on a generalist leaf chewer and a phloem feeder is associated with, but not explained by an increase in herbivore-induced indole glucosinolates

2016 ◽  
Vol 123 ◽  
pp. 88-97 ◽  
Author(s):  
Ana Pineda ◽  
Nurmi Pangesti ◽  
Roxina Soler ◽  
Nicole M.van Dam ◽  
Joop J.A.van Loon ◽  
...  
Author(s):  
Jan Kotlarz ◽  
Katarzyna Kubiak ◽  
Marcin Spiralski

Oak is a European tree species highly sensitive to drought. If declining symptoms appear they are often detectable at the crown (such as dieback) enabling monitoring using aerial images and remote sensing methods. Here, we analyzed the impact of short and long-term drought on oaks located in central Poland, between the years of 2014 and 2017. We used leaf nitrogen (N) and phosphorus (P) concentrations measured in the laboratory, aerial images collected in the range of 460-880 nm and machine learning techniques to estimate nutrient concentrations on the > 4000 oaks growing on gleysoil in the study area. We determined a negative impact on N and P concentrations during both types of drought stress (-23% and 19% for N concentration in leaves; -27% and -10% for P concentration in leaves) and an inconsiderable impact on N:P values (3% increase of N:P ration during short and 7% decrease of N:P ration during long-term drought stress). We found that the long-term drought impact was spatially diverse, possibly depending on the presence of drainage ditches and competing species.


Author(s):  
V. Rajeswari ◽  
D. Vijayalakshmi ◽  
S. Srinivasan ◽  
R. Swarnapriya ◽  
S. Varanavasiappan ◽  
...  

Drought spells and heat stress have become quite common and agricultural production would experience a lag in near future. The combined effect of heat and drought stress is expected to cause negative impact on crop growth. Hence, an experiment was framed to assess the morphological and photosynthetic characters of chilli under combined drought and heat stress. Three different genotypes of chilli viz., K1, TNAU chilli hybrid CO 1, Ramanathapuram gundu were subjected to seven drought and temperature treatments. The experiment was designed in factorial completely randomized design (FCRD) at temperature controlled Open Top Chambers (OTC) and drought stress was gravimetically assesed. The results showed that, morphology and photosynthetic characters were affected irrespective of genotypes. The maximum reduction in plant height and leaf area was observed when plants were grown under 40% pot capacity and temperature of + 5°C from the ambient condition. The study also revealed that, the reduction of gas exchange parameters at 40% PC and A + 5°C with yield reduction of almost 76 per cent irrespective of genotypes. Stress treatments reduced the fruit length, fruit diameter compared to control in all genotypes. Stress Tolerence Index was calculated to study the physiological basis under combined drought and heat stress. The optimum level of stress by STI of 0.501 in 60% PC and A+ 3°C was standardized to study the basic physiological functions of chilli.


2021 ◽  
Vol 20 (4) ◽  
pp. 43-57
Author(s):  
Zahoor Ahmad ◽  
Ejaz Ahmad Warraich ◽  
Muhammad Aamir Iqbal ◽  
Celaleddin Barutçular ◽  
Hesham Alharby ◽  
...  

Silicon (Si) is one of the best plant defense elements against the biotic and abiotic stresses. Camelina plants accumulate Si which serves in protection against drought stress. The present study was conducted to investigate the impact of different doses of foliage applied Si (0, 3, 6 and 9 mM) under water stress (40% field capacity, FC) and non-stress conditions (100% FC) on camelina genotypes (Canadian and Australian). The imposed drought drastically decreased the growth parameters like root-shoot length and plant fresh and dry weight and also had negative impact on the chlorophyll content along with water relation attributes (water potential, osmotic potential and turgor pressure). In contrast, total free amino acids, total soluble proteins, proline and antioxidants such as ascorbic peroxidase (APX), superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) were enhanced especially in water stressed Canadian genotype, while osmoprotectants (flavonoids, anthocyanins and glycinebetaine) and phenolics contents were decreased. On the other hand, the foliar application of Si was instrumental in enhancing the growth of camelina by increasing the chlorophyll contents and water relation of stressed and non-stressed plants. Similarly, the biochemical, osmoprotectants and antioxidant metabolism was also improved in camelina stressed plants through the application of foliar Si. In conclusion, foliar application of 6 mM Si at vegetative growth stage played a vital role in alleviating the drastic impact of water stress on camelina growth by improving the water status, chlorophyll content, accumulation of phenolics and osmoprotectants and activating antioxidants. Therefore, the foliar application of Si could be developed as an important biologically viable strategy for boosting the tolerance in camelina plants to water stress conditions.


Agromix ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 151-165
Author(s):  
Nia Romania Patriyawaty ◽  
Gatut W. Anggara

Drought stress is a major constraint to the production and yield stability of soybean (Glycine max (L.) Merr). Drought stress at the generative phase had a negative impact on soybean potential yield significantly. This study evaluated variation in five soybean genotypes (G1, G2, G3, G4 and G5) in their response to the three levels (100% of field capacity (D1), 80% from field capacity (D2) and 60% from field capacity (D3)) of drought stress in a glass house. This study was arranged in a factorial randomized completely block design with three replications. Results showed that all five genotypes responded significantly (P<0.05) to the drought stress treatments in soybean yield. The average yield was respectively reduced by 8.4% and 11.6% in the D2 and D3 treatments, respectively, compared to the D1 (control). Percent reduction of yield for genotype G4 (19.8%) was lower compared to other genotypes. This is indicated that genotype G4 tolerance to drought stress. The evaluation on the morphological character was potentially to become a screening tool for soybean breeding program.  


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1810
Author(s):  
Oksana Lastochkina ◽  
Darya Garshina ◽  
Sergey Ivanov ◽  
Ruslan Yuldashev ◽  
Regina Khafizova ◽  
...  

The protective effects against drought stress of the endophytic bacterium Bacillus subtilis 10-4 were measured by studying the priming response in two wheat (Triticum aestivum L.)—Ekada70 (E70) and Salavat Yulaev (SY)—lines, tolerant and susceptible to drought, respectively. B. subtilis 10-4 improved germination and growth parameters under normal conditions in both cultivars with the most pronounced effect observed in cv. E70. Under drought conditions, B. subtilis 10-4 significantly ameliorated the negative impact of stress on germination and growth of cv. E70, but had no protective effect on cv. SY. B. subtilis 10-4 induced an increase in the levels of photosynthetic chlorophyll (Chl) a, Chl b, and carotenoids (Car) in the leaves of cv. E70, both under normal and drought conditions. In cv. SY plants, bacterial inoculation decreased the contents of Chl a, Chl b, and Car under normal conditions, but pigment content were almost recovered under drought stress. B. subtilis 10-4 increased water holding capacity (WHC) of cv. E70 (but did not affect this parameter in cv. SY) and prevented the stress-induced decline in WHC in both cultivars. Notably, B. subtilis 10-4 increased endogenous salicylic acid (SA) concentration in both cultivars, especially in cv. E70. Moreover, B. subtilis 10-4 reduced drought-induced endogenous SA accumulation, which was correlated with the influence of endophyte on growth, indicating a possible involvement of endogenous SA in the implementation of B. subtilis-mediated effects in both cultivars. Overall, B. subtilis 10-4 inoculation was found to increase drought tolerance in seedlings of both cultivars, as evidenced by decreased lipid peroxidation, proline content, and electrolyte leakage from tissues of wheat seedlings primed with B. subtilis 10-4 under drought conditions.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1078
Author(s):  
Faisal Zulfiqar ◽  
Jianjun Chen ◽  
Patrick M. Finnegan ◽  
Adnan Younis ◽  
Muhammad Nafees ◽  
...  

Trehalose (Tre) and salicylic acid (SA) are increasingly used to mitigate drought stress in crop plants. In this study, a pot experiment was performed to study the influence of Tre and SA applied individually or in combination on the growth, photosynthesis, and antioxidant responses of sweet basil (Ocimum basilicum L.) exposed to drought stress. Basil plants were watered to 60% or 100% field capacity with or without treatment with 30 mM Tre and/or 1 mM SA. Drought negatively affected growth, physiological parameters, and antioxidant responses. Application of Tre and/or SA resulted in growth recovery, increased photosynthesis, and reduced oxidative stress. Application of Tre mitigated the detrimental effects of drought more than SA. Furthermore, co-application of Tre and SA largely eliminated the negative impact of drought by reducing oxidative stress through increased activities of antioxidant enzymes superoxide dismutase, peroxidase, and catalase, as well as the accumulation of the protective osmolytes proline and glycine betaine. Combined Tre and SA application improved water use efficiency and reduced the amount of malondialdehyde in drought-stressed plants. Our results suggested that combined application of Tre and SA may trigger defense mechanisms of sweet basil to better mitigate oxidative stress induced by drought stress, thereby improving plant growth.


Author(s):  
Kiran Ramesh Pawar ◽  
Sopan Ganpatrao Wagh ◽  
Pravin Prakash Sonune ◽  
Sakshi Raju Solunke ◽  
Shubham Babanrao Solanke ◽  
...  

Maize (Zea mays L.) is a widely grown crop with a high rate of photosynthetic activity due to its C4 pathway leading to higher yields of grain and a potential for biomass. It is predominantly cross-pollinated crop, a feature that has contributed to its wide morphological variability and geographical adaptability. Abiotic stress such as drought stress negatively affects plant growth and development. The present study was designed to investigate the effects of drought stress on the morphological and biochemical content of seven different maize varieties. Here we have tested 7 different varieties of maize from the Marathwada region of Maharshtra, India. One week old plants have been affected by drought stress. After one week of drought stress, the plants were subjected to various morphometric and biochemical tests. The results showed that water stress treatment significantly affects root length, shoot length and fresh biomass of seven different varieties, i.e. TMMH 806, NMH 1008, DELTA 10V30, INDAM 1122, SRIKAR 3555, DKC 9141, SGA. Drought stress also had a negative impact on chlorophyll and proline content. Result further exhibited that based on drought tolerance index, variety SRIKAR 3555 could be ranked as drought tolerant and NMH 1008 as drought-sensitive, while remaining cultivator ranked as drought intermediates.


2020 ◽  
Vol 5 (1) ◽  
pp. 15-28
Author(s):  
Li Yang ◽  
◽  
Yu-Xi Feng ◽  
Xiao-Zhang Yu ◽  
◽  
...  

Abiotic stress like drought and heavy metal imposes a negative impact on exposed plants’ growth and development, commences over production of reactive oxygen species (ROS) inside plant cells resulting in oxidative stress at the cellular level. After that, plants activate multiple defense mechanisms, within which the superoxide dismutase (SOD) family acts as the first line of defense to eliminate ROS. From the literature, it is evident that fewer studies have been carried out in combination with molecular evolution and phylogenetics, and expression profile of the SOD genes amidst dicot and the monocot at subcellular level against drought stress and cadmium (Cd) metal exposure. In the present study, SOD isogenes are identified in purposely elected two dicot plants i.e. Arabidopsis thaliana (9 genes), Solanum lycopersicum (8 genes) and two monocot plants namely Triticum aestivum (11 genes), and Oryza sativa (7 genes), respectively. Based on the amino acids sequence similarities, the identified proteins are classified into three subfamilies in accordance to their phylogenetic relationships, namely Cu/ZnSOD, FeSOD, and MnSOD. High variability observed between Cu/ZnSOD with other two groups i.e. FeSOD and MnSOD which showed lesser variation within them by using secondary structure predication. Subcellular localization suggested that genes encoding FeSOD, MnSOD and Cu/ZnSOD are predominant in chloroplasts, mitochondria, and cytoplasm, respectively in studied plants. The expression profiling through microarray analysis showed varied strategies of SOD isogenes against drought stress and Cd exposure individually. From the perspective of evolution, this study would expand our knowledge for vividly understanding the role of distinctive SOD isogenes in detoxifying ROS in different plants under various abiotic stresses.


2020 ◽  
Vol 25 (50) ◽  
pp. 105-111
Author(s):  
Zlatica Miladinov ◽  
Ivana Maksimović ◽  
Svetlana Balešević-Tubić ◽  
Vojin Đukić ◽  
Zorica Nikolić ◽  
...  

Drought is one of the most important factors limiting the successful production of cultivated plants. One of the most sensitive stage to the water deficit in plants is seed germination. There are various methods of pre-sowing treatments that aim to reduce the negative impact of drought stress and improve seed germination. One of them is priming seeds. The aim of this experiment was to examine the effect of priming seeds in solutions - KNO3 (1%), ascorbic acid - AsA (100 mgl-1) and potassium chloride KCl (1%) on the reduction of the negative effect of drought stress. The effect of drought stress was simulated using different concentrations of PEG 6000 (0 (control), -0.30, -0.51, -0.80 MPa). The results of the research showed that with the increase of water deficiency, the effect of priming seeds is greater. At the water potential of the solution of -0.30 MPa, germination energy and seed germination increased on average by 6.77% and 5.08%, while at the water potential of the solution of -0.80 MPa, the increase was 19.28% and 16.75%, respectively. Also, priming seeds significantly reduced the intensity of lipid peroxidation and the content of free proline. From all the above, it can be concluded that priming of seeds is a method that can serve to improve the germination of soybean seeds in conditions of drought stress.


Sign in / Sign up

Export Citation Format

Share Document