Influence of surface roughness on a spray cooling system with R134a. Part II: Film thickness measurements

2013 ◽  
Vol 48 ◽  
pp. 73-80 ◽  
Author(s):  
Eduardo Martínez-Galván ◽  
Juan Carlos Ramos ◽  
Raúl Antón ◽  
Rahmatollah Khodabandeh
2011 ◽  
Vol 133 (1) ◽  
Author(s):  
Eduardo Martínez-Galván ◽  
Juan Carlos Ramos ◽  
Raúl Antón ◽  
Rahmatollah Khodabandeh

Experimental measurements in a spray cooling test rig have been carried out for several heat fluxes in the heater and different spray volumetric fluxes with the dielectric refrigerant R134a. Results of the heat transfer and the sprayed refrigerant film thickness measurements are presented. The film thickness measurements have been made with a high speed camera equipped with a long distance microscope. It has been found that there is a relation between the variation in the average Nusselt number and the film thickness along the spray cooling boiling curve. The heat transfer regimes along that curve are related not only with a variation in the average Nusselt number but also with changes in the film thickness. The qualitative analysis of those variations has served to understand better the heat transfer mechanisms occurring during the spray cooling.


2013 ◽  
Vol 46 ◽  
pp. 183-190 ◽  
Author(s):  
Eduardo Martínez-Galván ◽  
Raúl Antón ◽  
Juan Carlos Ramos ◽  
Rahmatollah Khodabandeh

TAPPI Journal ◽  
2010 ◽  
Vol 9 (5) ◽  
pp. 29-35 ◽  
Author(s):  
PAULINE SKILLINGTON ◽  
YOLANDE R. SCHOEMAN ◽  
VALESKA CLOETE ◽  
PATRICE C. HARTMANN

Blocking is undesired adhesion between two surfaces when subjected to pressure and temperature constraints. Blocking between two coated paperboards in contact with each other may be caused by inter-diffusion, adsorption, or electrostatic forces occurring between the respective coating surfaces. These interactions are influenced by factors such as the temperature, pressure, surface roughness, and surface energy. Blocking potentially can be reduced by adjusting these factors, or by using antiblocking additives such as talc, amorphous silica, fatty acid amides, or polymeric waxes. We developed a method of quantifying blocking using a rheometer. Coated surfaces were put in contact with each other with controlled pressure and temperature for a definite period. We then measured the work necessary to pull the two surfaces apart. This was a reproducible way to accurately quantify blocking. The method was applied to determine the effect external factors have on the blocking tendency of coated paperboards, i.e., antiblocking additive concentration, film thickness, temperature, and humidity.


Author(s):  
Rama R. Goruganthu ◽  
David Bethke ◽  
Shawn McBride ◽  
Tom Crawford ◽  
Jonathan Frank ◽  
...  

Abstract Spray cooling is implemented on an engineering tool for Time Resolved Emission measurements using a silicon solid immersion lens to achieve high spatial resolution and for probing high heat flux devices. Thermal performance is characterized using a thermal test vehicle consisting of a 4x3 array of cells each with a heater element and a thermal diode to monitor the temperature within the cell. The flip-chip packaged TTV is operated to achieve uniform heat flux across the die. The temperature distribution across the die is measured on the 4x3 grid of the die for various heat loads up to 180 W with corresponding heat flux of 204 W/cm2. Using water as coolant the maximum temperature differential across the die was about 30 °C while keeping the maximum junction temperature below 95 °C and at a heat flux of 200 W/cm2. Details of the thermal performance of spray cooling system as a function of flow rate, coolant


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 574
Author(s):  
Ana Vafadar ◽  
Ferdinando Guzzomi ◽  
Kevin Hayward

Air heat exchangers (HXs) are applicable in many industrial sectors because they offer a simple, reliable, and cost-effective cooling system. Additive manufacturing (AM) systems have significant potential in the construction of high-efficiency, lightweight HXs; however, HXs still mainly rely on conventional manufacturing (CM) systems such as milling, and brazing. This is due to the fact that little is known regarding the effects of AM on the performance of AM fabricated HXs. In this research, three air HXs comprising of a single fin fabricated from stainless steel 316 L using AM and CM methods—i.e., the HXs were fabricated by both direct metal printing and milling. To evaluate the fabricated HXs, microstructure images of the HXs were investigated, and the surface roughness of the samples was measured. Furthermore, an experimental test rig was designed and manufactured to conduct the experimental studies, and the thermal performance was investigated using four characteristics: heat transfer coefficient, Nusselt number, thermal fluid dynamic performance, and friction factor. The results showed that the manufacturing method has a considerable effect on the HX thermal performance. Furthermore, the surface roughness and distribution, and quantity of internal voids, which might be created during and after the printing process, affect the performance of HXs.


2018 ◽  
Vol 154 ◽  
pp. 01114 ◽  
Author(s):  
Aria Riswanda ◽  
Indro Pranoto ◽  
Deendarlianto ◽  
Indarto ◽  
Teguh Wibowo

Multiple droplets are drops of water that continuously dropped onto a surface. Spray cooling is an application of the use of droplet on a cooling system. Spray cooling is usually used in a cooling system of electronic devices, and material quenching. In this study, correlations between Weber number and surface temperature decrease rate during multiple droplets impingement are investigated and analyzed. Visualization process is used to help determine the evaporation time of droplets impingement by using high speed camera. Induction stove is used to maintain a stainless steel surface temperature at 120°C, 140°C, and 160°C. The Weber number was varied at 15, and 52.5 to simulate low and medium Weber number. The result of this study shows that increase in Weber number does not increase the temperature decrease rate noticeably. Whereas the Weber number decrease the time required for surface temperature to reach its lowest surface temperature. It was also found that for low and medium Weber number, Weber number affect the evaporation time of multiple droplets after impingement.


2019 ◽  
Vol 60 ◽  
pp. 124-141 ◽  
Author(s):  
Naser Ali ◽  
Joao Amaral Teixeira ◽  
Abdulmajid Addali

This research investigates the effect of surface roughness, water temperature, and pH value on the wettability behaviour of copper surfaces. An electron beam physical vapour deposition technique was used to fabricate 25, 50, and 75 nm thin films of copper on the surface of copper substrates. Surface topographical analysis, of the uncoated and coated samples, was performed using an atomic force microscopy device to observe the changes in surface microstructure. A goniometer device was then employed to examine the surface wettability of the samples by obtaining the static contact angle between the liquid and the attached surface using the sessile drops technique. Waters of pH 4, 7, and 9 were employed as the contact angle testing fluids at a set of fixed temperatures that ranged from 20°C to 60°C. It was found that increasing the deposited film thickness reduces the surface roughness of the as-prepared copper surfaces and thus causing the surface wettability to diverge from its initial hydrophobic nature towards the hydrophilic behaviour region. A similar divergence behaviour was seen with the rise in temperature of water of pH 4, and 9. In contrast, the water of pH 7, when tested on the uncoated surface, ceased to reach a contact angle below 90o. It is believed that the observed changes in surface wettability behaviour is directly linked to the liquid temperature, pH value, surface roughness, along with the Hofmeister effect between the water and the surface in contact.


2013 ◽  
Vol 420 ◽  
pp. 30-35
Author(s):  
Khanittha Wongseedakaew ◽  
Jesda Panichakorn

This paper presents the effects of rough surface air-soft elastohydrodynamic lubrication (EHL) of rollers for soft material under the effect of air molecular slip. The time independent modified Reynolds equation and elasticity equation were solved numerically using finite different method, Newton-Raphson method and multigrid multilevel methods were used to obtain the film pressure profiles and film thickness in the contact region. The effects of amplitude of surface roughness, modulus of elasticity and air inlet temperature are examined. The simulation results showed surface roughness has effect on film thickness but it little effect to air film pressure. When the amplitude of surface roughness and modulus of elasticity increased, the air film thickness decreased but air film pressure increased. However, the air inlet temperature increased when the air film thickness increased.


Sign in / Sign up

Export Citation Format

Share Document