scholarly journals The transcription factor ZEB1 (δEF1) represses Plakophilin 3 during human cancer progression

FEBS Letters ◽  
2007 ◽  
Vol 581 (8) ◽  
pp. 1617-1624 ◽  
Author(s):  
Kirsten Aigner ◽  
Luise Descovich ◽  
Mario Mikula ◽  
Aneesa Sultan ◽  
Brigitta Dampier ◽  
...  
2016 ◽  
Vol 2 (3) ◽  
pp. e1501473 ◽  
Author(s):  
Gaihua Zhang ◽  
Yongbing Zhao ◽  
Yi Liu ◽  
Li-Pin Kao ◽  
Xiao Wang ◽  
...  

A transcription factor functions differentially and/or identically in multiple cell types. However, the mechanism for cell-specific regulation of a transcription factor remains to be elucidated. We address how a single transcription factor, forkhead box protein A1 (FOXA1), forms cell-specific genomic signatures and differentially regulates gene expression in four human cancer cell lines (HepG2, LNCaP, MCF7, and T47D). FOXA1 is a pioneer transcription factor in organogenesis and cancer progression. Genomewide mapping of FOXA1 by chromatin immunoprecipitation sequencing annotates that target genes associated with FOXA1 binding are mostly common to these cancer cells. However, most of the functional FOXA1 target genes are specific to each cancer cell type. Further investigations using CRISPR-Cas9 genome editing technology indicate that cell-specific FOXA1 regulation is attributable to unique FOXA1 binding, genetic variations, and/or potential epigenetic regulation. Thus, FOXA1 controls the specificity of cancer cell types. We raise a “flower-blooming” hypothesis for cell-specific transcriptional regulation based on these observations.


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. e15093-e15093
Author(s):  
E. C. Marginean ◽  
G. Torlakovic ◽  
H. Neufeld ◽  
E. Torlakovic

e15093 Background: GATA-4 zinc finger transcription factor is involved in regulation of cellular development, proliferation, and differentiation and is important in embryonic development of gastrointestinal tract. However, GATA-4 is not expressed in normal adult colonic mucosa. Its protein expression in colonic adenocarcinoma has not been systematically evaluated and small number of samples was previously reported as negative. Nuclear factor-B (NF-B) activation was shown to promote the growth of the colon tumors in experimental models and was correlated with tumor angiogenesis and progression in human colorectal cancer. Methods: Forty cases of colorectal adenocarcinoma were evaluated. The benign colonic mucosa and the matching metastatic tumors of the same patients were also included in the study. TMAs which included 139 samples were evaluated by immunohistochemistry and nuclear and cytoplasmic GATA-4 expression was scored (0–3+). NF-B activation was detected as nuclear reactivity for p65. Results: GATA-4 was expressed in 32% of colorectal adenocarcinoma, but not in benign colonic mucosa (p=0.0001, Chi-Square). GATA-4 was also significantly more expressed in metastatic (41%) than in primary (21%) colorectal adenocarcinoma (p<0.0001, Chi-Square). NF-B activation was not present in any of the samples of benign colonic mucosa, but it was detected in 64% adenocarcinomas (p<0.0001, Chi-Square). While there was no difference in NF-B activation between primary vs. metastatic adenocarcinoma, a strong positive association between GATA-4 expression and NF-B activation (p<0.0001, Linear-by- Linear) was found. Conclusions: GATA-4, a developmental transcription factor is not expressed by normal colonic mucosa, but is present in 1/5 of primary tumors that gave rise to distant metastases and in almost 1/2 of their respective metastases. GATA- 4 is also strongly positively associated with NF-B activation previously described to have a role in human cancer progression. GATA-4 may have a role in colorectal adenocarcinoma development and progression and it should be further evaluated in prospective studies as a putative adverse prognostic factor in colorectal adenocarcinoma. No significant financial relationships to disclose.


Author(s):  
Anika Tabassum ◽  
Md. Nazmus Samdani ◽  
Tarak Chandra Dhali ◽  
Rahat Alam ◽  
Foysal Ahammad ◽  
...  

Abstract Transporter associated with antigen processing 1 (TAP1) is a transporter protein that represent tumor antigen in the MHC I or HLA complex. Any defect in the TAP1 gene resulting in inadequate tumor tracking. TAP1 influences multidrug resistance (MDR) in human cancer cell lines and hinders the treatment during chemotherapeutic. The association of TAP1 in cancer progression remains mostly unknown and further study of the gene in relation with cancer need to conduct. Thus, the study has designed to analyze the association between the TAP1 with cancer by computationally. The expression pattern of the gene has determined by using ONCOMINE, GENT2, and GEPIA2 online platforms. The protein level of TAP1 was examined by the help of Human Protein Atlas. Samples with different clinical outcomes were investigated to evaluate the expression and promoter methylation in cancer vs. normal tissues by using UALCAN server. The copy number alteration, mutation frequency, and expression level of the gene in different cancer were analyzed by using cBioPortal server. The PrognoScan and KM plotter platforms were used to perform the survival analysis and represented graphically. Additionally, pathway and gene ontology (GO) features correlated to the TAP1 gene were analyzed and presented by bar charts. After arranging the data in a single panel like correlating expression to prognosis, mutational and alterations characteristic, and pathways analysis, we observed some interesting insights that emphasized the importance of the gene in cancer progression. The study found the relationship between the TAP1 expression pattern and prognosis in different cancer tissues and shows how TAP1 affects the clinical characteristics. The analytical data presented in the study is vital to learn about the effect of TAP1 in tumor tissue, where previously studies showing contradicting expression of TAP1 in cancer tissue. The analyzed data can also be utilized further to evade the threats against chemotherapy. Overall, the study provided a new aspect to consider the role of TAP1 gene in cancer progression and survival status. Key messages • This study demonstrated, for the first time, a correlation between the TAP1 gene and tumor progression. • An upregulation of TAP1 mRNA was demonstrated in various cancer types. • This study reported a significant negative correlation for TAP1 gene expression and the survival rate in different cancer types.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1299
Author(s):  
Yi Wu ◽  
Peng Huang ◽  
Xian-Ping Dong

Ca2+ is pivotal intracellular messenger that coordinates multiple cell functions such as fertilization, growth, differentiation, and viability. Intracellular Ca2+ signaling is regulated by both extracellular Ca2+ entry and Ca2+ release from intracellular stores. Apart from working as the cellular recycling center, the lysosome has been increasingly recognized as a significant intracellular Ca2+ store that provides Ca2+ to regulate many cellular processes. The lysosome also talks to other organelles by releasing and taking up Ca2+. In lysosomal Ca2+-dependent processes, autophagy is particularly important, because it has been implicated in many human diseases including cancer. This review will discuss the major components of lysosomal Ca2+ stores and their roles in autophagy and human cancer progression.


Biomolecules ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 15
Author(s):  
Aishat Motolani ◽  
Matthew Martin ◽  
Mengyao Sun ◽  
Tao Lu

The nuclear factor kappa B (NF-κB) is a ubiquitous transcription factor central to inflammation and various malignant diseases in humans. The regulation of NF-κB can be influenced by a myriad of post-translational modifications (PTMs), including phosphorylation, one of the most popular PTM formats in NF-κB signaling. The regulation by phosphorylation modification is not limited to NF-κB subunits, but it also encompasses the diverse regulators of NF-κB signaling. The differential site-specific phosphorylation of NF-κB itself or some NF-κB regulators can result in dysregulated NF-κB signaling, often culminating in events that induce cancer progression and other hyper NF-κB related diseases, such as inflammation, cardiovascular diseases, diabetes, as well as neurodegenerative diseases, etc. In this review, we discuss the regulatory role of phosphorylation in NF-κB signaling and the mechanisms through which they aid cancer progression. Additionally, we highlight some of the known and novel NF-κB regulators that are frequently subjected to phosphorylation. Finally, we provide some future perspectives in terms of drug development to target kinases that regulate NF-κB signaling for cancer therapeutic purposes.


2016 ◽  
Vol 113 (42) ◽  
pp. E6409-E6417 ◽  
Author(s):  
David G. McFadden ◽  
Katerina Politi ◽  
Arjun Bhutkar ◽  
Frances K. Chen ◽  
Xiaoling Song ◽  
...  

Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity.


2016 ◽  
Vol 44 (5) ◽  
pp. 1441-1454 ◽  
Author(s):  
Jennifer J. Huang ◽  
Gerard C. Blobe

Transforming growth factor-β (TGF-β) mediates numerous biological processes, including embryonic development and the maintenance of cellular homeostasis in a context-dependent manner. Consistent with its central role in maintaining cellular homeostasis, inhibition of TGF-β signaling results in disruption of normal homeostatic processes and subsequent carcinogenesis, defining the TGF-β signaling pathway as a tumor suppressor. However, once carcinogenesis is initiated, the TGF-β signaling pathway promotes cancer progression. This dichotomous function of the TGF-β signaling pathway is mediated through altering effects on both the cancer cells, by inducing apoptosis and inhibiting proliferation, and the tumor microenvironment, by promoting angiogenesis and inhibiting immunosurveillance. Current studies support inhibition of TGF-β signaling either alone, or in conjunction with anti-angiogenic therapy or immunotherapy as a promising strategy for the treatment of human cancers.


2008 ◽  
Vol 2 ◽  
pp. CMO.S548 ◽  
Author(s):  
Takayuki Sugiyama ◽  
Donna P. Frazier ◽  
Pankaj Taneja ◽  
Robert D. Kendig ◽  
Rachel L. Morgan ◽  
...  

Summary Dmp1 (cyclin D-interacting myb-like protein 1; also called Dmtf1) is a transcription factor that has been isolated in a yeast two-hybrid screen through its binding property to cyclin D2. Dmp1 directly binds to and activates the Arf promoter and induces Arf-p53-dependent cell cycle arrest in primary cells. D-type cyclins usually inhibit Dmp1-mediated transcription in a Cdk-independent fashion; however, Dmp1 shows synergistic effects with D-cyclins on the Arf promoter. Ras or Myc oncogene-induced tumor formation is accelerated in both Dmp1+/- and Dmp1-/- mice with no significant differences between Dmp1+/- and Dmp1-/-. Thus, Dmp1 is haplo-insufficient for tumor suppression. Tumors from Dmp1-/- or Dmp1+/- mice often retain wild-type Arf and p53, suggesting that Dmp1 is a physiological regulator of the Arf-p53 pathway. The Dmp1 promoter is activated by oncogenic Ras-Raf signaling, while it is repressed by physiological mitogenic stimuli, overexpression of E2F proteins, and genotoxic stimuli mediated by NF-κB. The human DMP1 gene (h DMP1) is located on chromosome 7q21 and is hemizygously deleted in approximately 40% of human lung cancers, especially those that retain normal INK4a/ARF and P53 loci. Thus, h DMP1 is clearly involved in human carcinogenesis, and tumors with h DMP1 deletion may constitute a discrete disease entity.


Sign in / Sign up

Export Citation Format

Share Document