Melatonin treatment reduces ethylene production and maintains fruit quality in apple during postharvest storage

2021 ◽  
Vol 337 ◽  
pp. 127753
Author(s):  
Jakaria Chowdhury Onik ◽  
Su Chit Wai ◽  
Ang Li ◽  
Qiong Lin ◽  
Qianqian Sun ◽  
...  
Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 820
Author(s):  
José M. Lorente-Mento ◽  
Fabián Guillén ◽  
Salvador Castillo ◽  
Domingo Martínez-Romero ◽  
Juan M. Valverde ◽  
...  

The effect of melatonin pomegranate tree treatments on fruit quality and bioactive compounds with antioxidant activity at harvest and during storage at 10 °C for 60 days was assayed in two consecutive years, 2019 and 2020. In the first year, trees were treated with 0.1, 0.3 and 0.5 mM of melatonin along the developmental fruit growth cycle, and results showed that bioactive compounds (total phenolics and total and individual anthocyanins) and antioxidant activity at harvest were higher in fruits from melatonin-treated trees than in controls. Other fruit quality parameters, such as firmness, total soluble solids and aril red colour, were also increased as a consequence of melatonin treatment. In fruit from control tress, firmness and acidity levels decreased during storage, while increases occurred on total soluble solids, leading to fruit quality reductions. These changes were delayed, and even maintenance of total acidity was observed, in fruit from melatonin-treated trees with respect to controls, resulting in a fruit shelf-life increase. Moreover, concentration of phenolics and anthocyanins and antioxidant activity were maintained at higher levels in treated than in control fruits during the whole storage period. In general, all the mentioned effects were found at the highest level with the 0.1 mM melatonin dose, and then it was selected for repeating the experiment in the second year and results of the first year were confirmed. Thus, 0.1 mM melatonin treatment could be a useful tool to enhance aril content on bioactive compounds with antioxidant activity and health beneficial effects and to improve quality traits of pomegranate fruit, at harvest and during postharvest storage.


2014 ◽  
Vol 86 (1) ◽  
pp. 485-494 ◽  
Author(s):  
CRISTIANO ANDRÉ STEFFENS ◽  
CASSANDRO V.T. DO AMARANTE ◽  
ERLANI O. ALVES ◽  
AURI BRACKMANN

The objective of this study was to evaluate the effect of controlled atmosphere (CA) on quality preservation of ‘Laetitia’ plums, mainly on internal breakdown, in order to determine the best CA storage conditions. Two experiments were carried out one in 2010, and another in 2011. In 2010, besides cold storage (CS; 21.0 kPa O2 + 0.03 kPa CO2), the fruits were stored under the following CA conditions (kPa O2+kPa CO2): 1+3, 1+5, 2+5, 2+10, and 11+10. In 2011, the fruits were stored under CS and CA of 1+0, 1+1, 2+1, and 2+2. The fruit stored under different CA conditions had lower respiration and ethylene production, better preservation of flesh firmness, texture and titratable acidity, lower skin red color, and lower incidence of skin cracking than the fruit in CS. In 2010, the fruit under CA with 2+5, 1+5, and 1+3 had a pronounced delay in ripening, although it exhibited a high incidence of internal breakdown. In 2011, the CA conditions with 2+1 and 2+2 provided the best delay in ripening and a reduced incidence of internal breakdown. The best CA condition for cold storage (at 0.5°C) of ‘Laetitia’ plums is 2 kPa O2 + 2 kPa CO2.


Metabolites ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 187 ◽  
Author(s):  
Delphine M. Pott ◽  
José G. Vallarino ◽  
Sonia Osorio

Metabolic changes occurring in ripe or senescent fruits during postharvest storage lead to a general deterioration in quality attributes, including decreased flavor and ‘off-aroma’ compound generation. As a consequence, measures to reduce economic losses have to be taken by the fruit industry and have mostly consisted of storage at cold temperatures and the use of controlled atmospheres or ripening inhibitors. However, the biochemical pathways and molecular mechanisms underlying fruit senescence in commercial storage conditions are still poorly understood. In this sense, metabolomic platforms, enabling the profiling of key metabolites responsible for organoleptic and health-promoting traits, such as volatiles, sugars, acids, polyphenols and carotenoids, can be a powerful tool for further understanding the biochemical basis of postharvest physiology and have the potential to play a critical role in the identification of the pathways affected by fruit senescence. Here, we provide an overview of the metabolic changes during postharvest storage, with special attention to key metabolites related to fruit quality. The potential use of metabolomic approaches to yield metabolic markers useful for chemical phenotyping or even storage and marketing decisions is highlighted.


2014 ◽  
Vol 98 ◽  
pp. 115-122 ◽  
Author(s):  
Pedro J. Zapata ◽  
Alejandra Martínez-Esplá ◽  
Fabián Guillén ◽  
Huertas M. Díaz-Mula ◽  
Domingo Martínez-Romero ◽  
...  

1993 ◽  
Vol 118 (6) ◽  
pp. 801-806 ◽  
Author(s):  
Chien Yi Wang ◽  
William S. Conway ◽  
Judith A. Abbott ◽  
George F. Kramer ◽  
Carl E. Sams

Prestorage infiltration of `Golden Delicious' apples (Malus domestica Borkh.) with calcium (Ca) retarded texture changes during storage at 0C and inhibited ethylene production of the fruit at 20C. Infiltration of the fruit with the polyamines (PA) putrescine (PUT) or spermidine (SPD) also altered texture changes, but did not inhibit ethylene production. When the fruit were treated with Ca first and then with PA, cell wall-hound Ca concentrations increased 4-fold, but PA levels in the cell wall increased only slightly. When the fruit were treated with PA first and then with Ca, PA levels in the cell wall increased 3-fold, but Ca concentration increased only 2-fold. These results indicate that Ca and PA may he competing for the same binding sites in the cell wall and that the improvement of fruit quality during storage by these cations could involve strengthening of the cell wall.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qian Bai ◽  
Yuanyue Shen ◽  
Yun Huang

Mineral nutrition, taken up from the soil or foliar sprayed, plays fundamental roles in plant growth and development. Among of at least 14 mineral elements, the macronutrients nitrogen (N), potassium (K), phosphorus (P), and calcium (Ca) and the micronutrient iron (Fe) are essential to Rosaceae fruit yield and quality. Deficiencies in minerals strongly affect metabolism with subsequent impacts on the growth and development of fruit trees. This ultimately affects the yield, nutritional value, and quality of fruit. Especially, the main reason of the postharvest storage loss caused by physiological disorders is the improper proportion of mineral nutrient elements. In recent years, many important mineral transport proteins and their regulatory components are increasingly revealed, which make drastic progress in understanding the molecular mechanisms for mineral nutrition (N, P, K, Ca, and Fe) in various aspects including plant growth, fruit development, quality, nutrition, and postharvest storage. Importantly, many studies have found that mineral nutrition, such as N, P, and Fe, not only affects fruit quality directly but also influences the absorption and the content of other nutrient elements. In this review, we provide insights of the mineral nutrients into their function, transport, signal transduction associated with Rosaceae fruit quality, and postharvest storage at physiological and molecular levels. These studies will contribute to provide theoretical basis to improve fertilizer efficient utilization and fruit industry sustainable development.


HortScience ◽  
2007 ◽  
Vol 42 (2) ◽  
pp. 304-308 ◽  
Author(s):  
Vijaya Kumar Rapaka ◽  
James E. Faust ◽  
John M. Dole ◽  
Erik S. Runkle

This study investigated the preharvest carbohydrate status and postharvest ethylene action of unrooted shoot-tip cuttings of lantana ‘Dallas Red’ harvested at three times during the day (0800, 1200, and 1600 hr) in relation to subsequent leaf abscission, shoot apices blackening, and adventitious root formation. The cuttings harvested at various times during the day were stored in darkness at 20 ± 1 °C for 4 days in sealed polyethylene bags. The cuttings harvested at 0800 hr had lowest total nonstructural carbohydrate concentrations; however, the amount of ethylene production during postharvest storage was similar among harvest times and increased during the storage period. After 4 days of storage, 69% of the leaves of cuttings harvested at 0800 hr abscised, but only 22% and 8% of the leaves abscised in cuttings harvested at 1200 and 1600 hr, respectively. Application of 1-methylcyclopropene (1-MCP) increased ethylene production and suppressed leaf abscission regardless of the harvest time, but cuttings harvested at 0800 hr developed blackened shoot apices. Leaf abscission was negatively correlated with total nonstructural carbohydrate concentration in the leaves, but no relationship was found with ethylene production. These results indicate that a high endogenous carbohydrate status decreases the postharvest ethylene sensitivity in unrooted shoot-tip cuttings of lantana. Time of harvest influenced subsequent rooting response; however, 1-MCP application did not inhibit rooting. Among various storage treatments, the best rooting response was observed in cuttings harvested at 1600 hr and treated with 1-MCP. Therefore, significant improvement of postharvest storage quality in vegetative lantana cuttings could be achieved by harvesting cuttings late in the day and treating with 1-MCP.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 806B-806
Author(s):  
Robert A. Saftner* ◽  
Judith A. Abbott ◽  
Gene E. Lester

New fresh-cut melon products prepared from orange-fleshed honeydews have recently become available in retail markets. We compared fresh-cut chunks of orange-fleshed honeydew (`Temptation' and four breeding lines), green-fleshed honeydew (`Honey Brew'), and cantaloupe (`Cruiser'). All genotypes had similar respiration and ethylene production rates and soluble solids contents: genotype means for soluble solids contents were between 9.4% and 10.1 %. Five hundred untrained consumers preferred the flavor, texture, and overall eating quality of the orange honeydews to the green cultivar, with `Temptation' scoring highest. `Temptation' chunks were less firm at the time of processing and after 12 days storage than chunks prepared from all other genotypes. The color of orange-fleshed honeydew chunks was intermediate between that of cantaloupe and green-fleshed honeydew and the color was maintained during 12 days storage. Total aromatic volatiles from juice extracts of orange-fleshed honeydew chunks was 1.2 to 4.7 times higher than that of green-fleshed honeydew extracts and volatiles from cantaloupe was >4.8 fold greater than extracts from `Temptation' and >9.3 fold higher than that of other honeydew extracts. Many individual volatiles were identical in cantaloupe and honeydews; however, honeydew genotypes, particularly the orange-pigmented types, were distinctive from cantaloupe in having relatively high levels of various nonenyl and nonadienyl acetates of uncharacterized aromas. The results indicate that `Temptation' and other orange-fleshed honeydews are a promising new melon type for fresh-cut processing.


Horticulturae ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 303
Author(s):  
Luisa Fernanda Duque ◽  
María Victoria Amador ◽  
Miguel Guzmán ◽  
Carlos Asensio ◽  
Juan Luis Valenzuela

In this study, a new technology was tested for its efficacy in the conservation of tomato fruits. An initial experiment was conducted to determine the effects of eugenol on the main quality parameters of Raf tomato fruits; then, a main experiment was performed to test the effectiveness of the new technology. In both experiments, fruits of the tomato cultivar Raf at the mature green stage were used. The preliminary experiment demonstrated the effectiveness of eugenol in maintaining fruit quality during the postharvest life of the fruit. In the main experiment, the fruits were packed using a sachet filled with a mixture consisting of 10:1:1 clinoptilolite clay, ground clove buds, and activated charcoal. This mixture was evaluated against a commercial ethylene scavenger composed mainly of KMnO4-impregnated sepiolite. Three lots of fruits were used: One batch was considered as the control, where the fruits were not packed but kept in an open box at room temperature. The fruits in the other two batches were packed in 2 L PET containers with lids at a rate of three fruits per container, and a sachet of ground cloves and a commercial scavenger was added inside each container in each batch. The containers were kept at room temperature, and the following main quality parameters were analyzed: ethylene production rate, firmness, color, content of soluble solids, and pigments. The results showed that ground clove buds led to a reduction in ethylene production which was associated with a delay in maturation and could be a good alternative for use in the active fruit packaging of horticultural products.


Sign in / Sign up

Export Citation Format

Share Document