A predictive model for astringency based on in vitro interactions between salivary proteins and (−)-Epigallocatechin gallate

2021 ◽  
Vol 340 ◽  
pp. 127845 ◽  
Author(s):  
Qing-Qing Ye ◽  
Gen-Sheng Chen ◽  
Weichun Pan ◽  
Qing-Qing Cao ◽  
Liang Zeng ◽  
...  
2008 ◽  
Vol 78 (3) ◽  
pp. 242-249 ◽  
Author(s):  
Jun Xu ◽  
Jue Wang ◽  
Fei Deng ◽  
Zhihong Hu ◽  
Hualin Wang

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jing Zhao ◽  
Alan Blayney ◽  
Xiaorong Liu ◽  
Lauren Gandy ◽  
Weihua Jin ◽  
...  

AbstractEpigallocatechin gallate (EGCG) from green tea can induce apoptosis in cancerous cells, but the underlying molecular mechanisms remain poorly understood. Using SPR and NMR, here we report a direct, μM interaction between EGCG and the tumor suppressor p53 (KD = 1.6 ± 1.4 μM), with the disordered N-terminal domain (NTD) identified as the major binding site (KD = 4 ± 2 μM). Large scale atomistic simulations (>100 μs), SAXS and AUC demonstrate that EGCG-NTD interaction is dynamic and EGCG causes the emergence of a subpopulation of compact bound conformations. The EGCG-p53 interaction disrupts p53 interaction with its regulatory E3 ligase MDM2 and inhibits ubiquitination of p53 by MDM2 in an in vitro ubiquitination assay, likely stabilizing p53 for anti-tumor activity. Our work provides insights into the mechanisms for EGCG’s anticancer activity and identifies p53 NTD as a target for cancer drug discovery through dynamic interactions with small molecules.


Xenobiotica ◽  
2021 ◽  
pp. 1-12
Author(s):  
Arnaud Bruyère ◽  
Marc Le Vée ◽  
Elodie Jouan ◽  
Stephanie Molez ◽  
Anne T. Nies ◽  
...  

2021 ◽  
Vol 22 (10) ◽  
pp. 5072
Author(s):  
Olakunle Oladimeji ◽  
Jude Akinyelu ◽  
Aliscia Daniels ◽  
Moganavelli Singh

Advances in nanomedicine have seen the adaptation of nanoparticles (NPs) for subcellular delivery for enhanced therapeutic impact and reduced side effects. The pivotal role of the mitochondria in apoptosis and their potential as a target in cancers enables selective induction of cancer cell death. In this study, we examined the mitochondrial targeted delivery of betulinic acid (BA) by the mitochondriotropic TPP+-functionalized epigallocatechin gallate (EGCG)-capped gold NPs (AuNPs), comparing the impact of polyethylene glycol (PEG) and poly-L-lysine-graft-polyethylene glycol (PLL-g-PEG) copolymer on delivery efficacy. This included the assessment of their cellular uptake, mitochondrial localization and efficacy as therapeutic delivery platforms for BA in the human Caco-2, HeLa and MCF-7 cancer cell lines. These mitochondrial-targeted nanocomplexes demonstrated significant inhibition of cancer cell growth, with targeted nanocomplexes recording IC50 values in the range of 3.12–13.2 µM compared to that of the free BA (9.74–36.31 µM) in vitro, demonstrating the merit of mitochondrial targeting. Their mechanisms of action implicated high amplitude mitochondrial depolarization, caspases 3/7 activation, with an associated arrest at the G0/G1 phase of the cell cycle. This nano-delivery system is a potentially viable platform for mitochondrial-targeted delivery of BA and highlights mitochondrial targeting as an option in cancer therapy.


2000 ◽  
Vol 44 (8) ◽  
pp. 2187-2189 ◽  
Author(s):  
E. J. Giamarellos-Bourboulis ◽  
P. Grecka ◽  
A. Dionyssiou-Asteriou ◽  
H. Giamarellou

ABSTRACT Twenty-six multidrug-resistant Pseudomonas aeruginosaisolates were exposed over time to 300 μg of gamma-linolenic acid or arachidonic acid per ml or to the combination of both acids at 150 μg/ml each with ceftazidime and amikacin with or without albumin to observe the in vitro interactions of the antibiotics. Antibiotics and albumin were applied at their levels found in serum. Synergy between acids and antibiotics was found against 13 isolates, and it was expressed after 5 h of growth in the presence of albumin. The results indicate that further application in experimental infection models is merited.


2021 ◽  
Vol 7 (7) ◽  
pp. 567
Author(s):  
Eyal Ben-Dor Cohen ◽  
Micha Ilan ◽  
Oded Yarden

Marine sponges harbor a diverse array of microorganisms and the composition of the microbial community has been suggested to be linked to holo-biont health. Most of the attention concerning sponge mycobiomes has been given to sponges present in shallow depths. Here, we describe the presence of 146 culturable mycobiome taxa isolated from mesophotic niche (100 m depth)-inhabiting samples of Agelas oroides, in the Mediterranean Sea. We identify some potential in vitro interactions between several A. oroides-associated fungi and show that sponge meso-hyl extract, but not its predominantly collagen-rich part, is sufficient to support hyphal growth. We demonstrate that changes in the diversity of culturable mycobiome constituents occur following sponge transplantation from its original mesophotic habitat to shallow (10 m) waters, where historically (60 years ago) this species was found. We conclude that among the 30 fungal genera identified as associated with A. oroides, Aspergillus, Penicillium and Trichoderma constitute the core mycobiome of A. oroides, and that they persist even when the sponge is transplanted to a suboptimal environment, indicative of the presence of constant, as well as dynamic, components of the sponge mycobiome. Other genera seemed more depth-related and appeared or disappeared upon host’s transfer from 100 to 10 m.


Sign in / Sign up

Export Citation Format

Share Document