Colletotrichum gloesporioides inhibition using chitosan-Ruta graveolens L essential oil coatings: Studies in vitro and in situ on Carica papaya fruit

2020 ◽  
Vol 326 ◽  
pp. 108649 ◽  
Author(s):  
Yeimmy Peralta-Ruiz ◽  
Carlos Grande Tovar ◽  
Angie Sinning-Mangonez ◽  
Daniel Bermont ◽  
Alexander Pérez Cordero ◽  
...  
Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2185
Author(s):  
Miroslava Kačániová ◽  
Lucia Galovičová ◽  
Petra Borotová ◽  
Veronika Valková ◽  
Hana Ďúranová ◽  
...  

The essential oil of Syzygium (S.) aromaticum (CEO) is known for its good biological activity. The aim of the research was to evaluate in vitro and in situ antimicrobial and antibiofilm activity of the essential oil produced in Slovakia. The main components of CEO were eugenol 82.4% and (E)-caryophyllene 14.0%. The antimicrobial activity was either weak or very strong with inhibition zones ranging from 4.67 to 15.78 mm in gram-positive and gram-negative bacteria and from 8.22 to 18.56 mm in yeasts and fungi. Among the tested bacteria and fungi, the lowest values of MIC were determined for Staphylococcus (S.) aureus and Penicillium (P.) expansum, respectively. The vapor phase of CEO inhibited the growth of the microscopic filamentous fungi of the genus Penicillium when tested in situ on bread. The strongest effect of mycelia inhibition in a bread model was observed against P. expansum at concentrations of 250 and 500 μL/mL. The best antimicrobial activity of CEO in the carrot model was found against P. chrysosenum. Differences between the mass spectra of Bacillus (B.) subtilis biofilms on the tested surfaces (wood, glass) and the control sample were noted from the seventh day of culture. There were some changes in mass spectra of Stenotrophomonas (S.) maltophilia, which were observed in both experimental groups from the fifth day of culture. These findings confirmed the impact of CEO on the protein structure of older biofilms. The findings indicate that, besides being safe and sensorially attractive, S. aromaticum has antimicrobial activity, which makes it a potential substitute for chemical food preservatives.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 155
Author(s):  
Veronika Valková ◽  
Hana Ďúranová ◽  
Lucia Galovičová ◽  
Petra Borotová ◽  
Nenad L. Vukovic ◽  
...  

Antimicrobial in vitro and in situ efficacies of Cymbopogon citratus essential oil (lemongrass, LGEO) against 17 spoilage microorganisms (bacteria, yeasts and fungi) were evaluated. Additionally, its chemical composition, and antioxidant and antibiofilm activities were investigated. The LGEO exhibited a strong antioxidant activity (84.0 ± 0.1%), and its main constituents were citral (61.5%), geraniol (6.6%) and 1,8-cineole (6.4%). An in vitro antimicrobial evaluation revealed the lowest inhibition zone (1.00 ± 0.00 mm) in Pseudomonas fluorescens, and the highest inhibition zone (18.00 ± 2.46 mm) in Candida krusei. The values for the minimal inhibitory concentration were determined to be the lowest for Salmonella enteritidis and the highest for C. albicans. Furthermore, the concentration of ≥250 µL/L of LGEO suppressed the growth of Penicillium aurantiogriseum, Penicillium expansum, Penicillium chrysogenum and Penicillium italicum. The changes in the molecular structure of the biofilms produced by Pseudomonas fluorescens and Salmonella enteritidis, after their treatment with LGEO, confirmed its action on both biofilm-forming bacteria. Moreover, an in situ antimicrobial activity evaluation displayed the most effective inhibitory effectiveness of LGEO against Micrococcus luteus, Serratia marcescens (250 µL/L) and Penicillium expansum (125, 250 and 500 µL/L) growing on a carrot. Our results suggest that LGEO, as a promising natural antimicrobial agent, can be applied in the innovative packaging of bakery products and different types of vegetables, which combines commonly used packing materials with the addition of LGEO.


Author(s):  
M. González ◽  
D. Loroña ◽  
L. Condolo ◽  
M. Almeida

This study proposes the use of cinnamon as an antimicrobial agent with the presence of cinnamic aldehyde, which has antibacterial and antifungal activity and inhibits the production of mycotoxins. Initially, microorganisms were isolated in damaged post-harvest strawberries, isolating colonies of Botritys sp. as the main causal agent of the deterioration of these fruits. The anti-fungal ability of the cinnamon essential oil (Cinnamomum zeynalicum) was evaluated ‘in vitro’ on the development of the isolated fungus, and ‘in vivo’ on fresh fruit at different storage temperatures, times and concentrations of AE. The results obtained showed that the most effective treatments ‘in vivo’ were 250 and 500 ppm of cinnamon essential oil. On-site analyses showed fruit stability in terms of color, texture, flavor, smell, pH and acidity, especially when there is a concentration of 500 ppm of cinnamon essential oil combined with the storage of the fruit at refrigeration temperature (5ºC), this being the most effective treatment to reduce fungal rot and loss of fruit quality. Keywords: cinnamon essential oil, postharvest, strawberry, antifungal activity, preservative. Resumen Está investigación plantea el uso de la canela como un agente antimicrobiano con la presencia de aldehído cinámico el mismo que posee actividad antibacterial, antifúngica e inhibe la producción de micotoxinas. De manera inicial se asilaron microorganismos en fresa postcosecha deteriorada, aislando colonias de Botritys sp. como el principal agente causal del deterioro de estas frutas. La capacidad antifúngica del aceite esencial de canela (Cinnamomum zeynalicum) fue evaluada ‘in vitro’ sobre el desarrollo del hongo aislado e ‘in vivo’ sobre fruta fresca a diferentes temperaturas de almacenamiento, tiempos y concentraciones de AE. Los resultados obtenidos demostraron que los tratamientos más efectivos ‘in vivo’ fueron 250 y 500 ppm de aceite esencial de canela. Los análisis in situ mostraron estabilidad de los frutos en cuanto a color, textura, sabor, olor, pH y acidez sobre todo cuando se tiene una concentración de 500 ppm de aceite esencial de canela combinado con el almacenamiento de la fruta a temperatura de refrigeración (5ºC) siendo el tratamiento más efectivo para reducir la pudrición fúngica y la pérdida de la calidad de los frutos. Palabras clave: aceite esencial de canela, post cosecha, fresa, actividad antifúngica, conservante.


2021 ◽  
Author(s):  
Shikha Tiwari ◽  
Neha Upadhyay ◽  
Bijendra Kumar Singh ◽  
Vipin Kumar Singh ◽  
Nawal Kishore Dubey

Abstract Present study deals with the efficacy of nanoencapsulated Homalomena aromatica essential oil (HAEO) as a potent green preservative against toxigenic Aspergillus flavus strain (AF-LHP-NS 7), AFB1 and free radical mediated deterioration of stored spices. GC-MS analysis revealed linalool (68.51%) as the major component of HAEO. HAEO was encapsulated into chitosan nanomatrix (CS-HAEO-Ne) and characterized through SEM, FTIR and XRD. CS-HAEO-Ne completely inhibited A. flavus growth and AFB1 biosynthesis at 1.25 µL/mL and 1.0 µL/mL, respectively in comparison to unencapsulated HAEO (1.75 µL/mL and 1.25 µL/mL respectively). CS-HAEO-Ne exhibited superior antioxidant efficacy (IC50 (DPPH) = 4.5 µL/mL) over unencapsulated HAEO (IC50 (DPPH) = 15.9 µL/mL). Further, CS-HAEO-Ne caused significant reduction in ergosterol content in treated A. flavus and provoked leakage of cellular ions (Ca+ 2, Mg+ 2 and K+) as well as 260 nm and 280 nm absorbing materials. Depletion of methylglyoxal level in treated A. flavus cells deals with the novel antiaflatoxigenic efficacy of CS-HAEO-Ne. CS-HAEO-Ne depicted excellent in situ efficacy by inhibiting mold attack and AFB1 contamination, mineral preservation and acceptable sensorial profile. Moreover, broad safety paradigm (LD50 value = 8006.84 µL/kg) of CS-HAEO-Ne also suggest it as novel green preservative to enhance shelf life of stored spices.


2021 ◽  
Vol 11 (24) ◽  
pp. 11753
Author(s):  
Călin Jianu ◽  
Ionuț Goleț ◽  
Daniela Stoin ◽  
Ileana Cocan ◽  
Gabriel Bujancă ◽  
...  

The research aimed to investigate the chemical composition and antioxidant and antibacterial potential of the essential oil (EO) isolated from the aerial parts (flowers, leaves, and stems) of Ruta graveolens L., growing in western Romania. Ruta graveolens L. essential oil (RGEO) was isolated by steam distillation (0.29% v/w), and the content was assessed by gas chromatography-mass spectrometry (GC-MS). Findings revealed that 2-Undecanone (76.19%) and 2-Nonanone (7.83%) followed by 2-Undecanol (1.85%) and 2-Tridecanone (1.42%) are the main detected compounds of the oil. The RGEO exerted broad-spectrum antibacterial and antifungal effects, S. pyogenes, S. aureus, and S. mutans being the most susceptible tested strains. The antioxidant activity of RGEO was assessed by peroxide and thiobarbituric acid value, 1,1-diphenyl-2-picrylhydrazyl radical (DPPH), and β-carotene/linoleic acid bleaching testing. The results indicated moderate radical scavenging and relative antioxidative activity in DPPH and β-carotene bleaching tests. However, between the 8th and 16th days of the incubation period, the inhibition of primary oxidation compounds induced by the RGEO was significantly stronger (p < 0.001) than butylated hydroxyanisole (BHA). Molecular docking analysis highlighted that a potential antimicrobial mechanism of the RGEO could be exerted through the inhibition of D-Alanine-d-alanine ligase (DDl) by several RGEO components. Docking analysis also revealed that a high number RGEO components could exert a potential in vitro protein-targeted antioxidant effect through xanthine oxidase and lipoxygenase inhibition. Consequently, RGEO could be a new natural source of antiseptics and antioxidants, representing an option for the use of synthetic additives in the food and pharmaceutical industry.


Biomolecules ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 399 ◽  
Author(s):  
Carlos David Grande Tovar ◽  
Johannes Delgado-Ospina ◽  
Diana Paola Navia Porras ◽  
Yeimmy Peralta-Ruiz ◽  
Alexander Pérez Cordero ◽  
...  

Guava is a fruit appreciated worldwide for its high content of bioactive compounds. However, it is considered a highly perishable fruit, generally attacked by pathogenic species such as the fungi Colletotrichum gloeosporioides, which causes anthracnosis. To diminish the losses caused by pathogenic fungi, coatings of chitosan (CS) with Ruta graveolens essential oil (RGEO) in different concentrations (0.5, 1.0, 1.5% v/v) were applied in situ and their effects on the physical properties and microbiological quality of the guavas were studied. The CS+RGEO coated fruits exhibited better physicochemical behavior and lower microbiological decay as compared to the uncoated guavas, demonstrating the effectiveness of the coatings, especially those with 1.5% of RGEO content. All the fruits coated had greater acceptance and quality than the controls, being more those with essential oil incorporation. In situ investigation of C. gloesporioides infection of guavas demonstrated that the CS+RGEO coated guavas showed a high percentage of inhibition in the development of anthracnose lesions. In the present investigation, an alternative method has been proposed to extend the stability of the guavas fruit up to 12 days with application in the food industry.


2018 ◽  
Vol 13 (10) ◽  
pp. 1934578X1801301 ◽  
Author(s):  
Lucia Caputo ◽  
Mariarosa Trotta ◽  
Angelica Romaniello ◽  
Vincenzo De Feo

In this study we determined the chemical composition of R. officinalis essential oil and evaluated its possible phytotoxic activity. The chemical composition of the essential oil was studied by GC and GC-MS analyses. A total of 57 compounds were identified and the main components are α-pinene (24.9%), verbenol (8.5%), verbenone (8.5%), 1,8-cineol (8.2%) and isoborneol (8.1%). Moreover, the essential oil and its main constituents, α-pinene and 1,8-cineol, were evaluated for their possible in vitro phytotoxic activity against germination and initial radical growth of radish ( Raphanus sativus L.), rue ( Ruta graveolens L.), lettuce ( Lactuca sativa L.) and tomato ( Solanum lycopersicum L.). The results showed thatboth germination and radical elongation were sensitive to the oil but not in the same way to α-pinene and 1,8-cineol. The oil influences in different ways radical elongation of R. sativus, R. graveolens, and L. sativa and the germination of S. lycopersicum. Instead α-pinene influenced only radical elongation of lettuce.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Mariela Vázquez Calderón ◽  
Manuel Jesús Zavala León ◽  
Fernando Amilcar Contreras Martín ◽  
Francisco Espadas y Gil ◽  
Abelardo Navarrete Yabur ◽  
...  

In order to generate new varieties, this study focused on the rescue and use of landraces and wild Carica papaya L. populations located at southern Yucatan, Mexico, to cross them with a commercial papaya cultivar (Maradol). In the cross L7 × M22, The native parent line L7 was used as the receiver parent while the commercial Maradol (M22) was used as the donor parent, seeking to generate genotypes with improved productivity and reduced plant height. Cluster analysis and principal components analysis grouped the genotypes firstly into those individuals with few fruits and those with many fruits and secondly into individuals with high and low plant height. Selected genotypes H13B, H17B, H19B, H68B, and H71B meet the desirable characteristics, such as reduced plant height (PH) and intermediate number of fruits per plant (NFP). These materials can be used now to produce new crosses to continue with the ongoing breeding program at CICY, seeking new varieties with higher productivity and adequate plant height, and also these genotypes will be preserved and integrated in the germplasm bank in situ and in vitro for further genetic work and possible exchange with other germplasm collections worldwide.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lucia Landi ◽  
Yeimmy Peralta-Ruiz ◽  
Clemencia Chaves-López ◽  
Gianfranco Romanazzi

Anthracnose of papaya (Carica papaya L.) caused by the fungus Colletotrichum spp. is one of the most economically important postharvest diseases. Coating with chitosan (CS) and Ruta graveolens essential oil (REO) might represent a novel eco-friendly method to prevent postharvest anthracnose infection. These compounds show both antimicrobial and eliciting activities, although the molecular mechanisms in papaya have not been investigated to date. In this study, the effectiveness of CS and REO alone and combined (CS-REO) on postharvest anthracnose of papaya fruit during storage were investigated, along with the expression of selected genes involved in plant defense mechanisms. Anthracnose incidence was reduced with CS, REO, and CS-REO emulsions after 9 days storage at 25°C, by 8, 21, and 37%, respectively, with disease severity reduced by 22, 29, and 44%, respectively. Thus, McKinney’s decay index was reduced by 22, 30, and 44%, respectively. A protocol based on reverse transcription quantitative real-time PCR (RT-qPCR) was validated for 17 papaya target genes linked to signaling pathways that regulate plant defense, pathogenesis-related protein, cell wall-degrading enzymes, oxidative stress, abiotic stress, and the phenylpropanoid pathway. CS induced gene upregulation mainly at 6 h posttreatment (hpt) and 48 hpt, while REO induced the highest upregulation at 0.5 hpt, which then decreased over time. Furthermore, CS-REO treatment delayed gene upregulation by REO alone, from 0.5 to 6 hpt, and kept that longer over time. This study suggests that CS stabilizes the volatile and/or hydrophobic substances of highly reactive essential oils. The additive effects of CS and REO were able to reduce postharvest decay and affect gene expression in papaya fruit.


Sign in / Sign up

Export Citation Format

Share Document